scholarly journals A Comparative Test Study on the Seismic Damage Sustained by Frame-Core Tube Structures

2019 ◽  
Vol 2019 ◽  
pp. 1-19
Author(s):  
Zuohua Li ◽  
Liang Chen ◽  
Jun Teng

The overall damage sustained by a structure can be controlled in the current damage-based seismic design, but the rationality of the relationship among the damage states of the components in the structure and the influences of those states on the overall seismic performance of the structure are currently ignored. In response to this problem, a comparative test was performed in this paper to study the seismic damage performances of two frame-core tube structure models, namely, an optimization model designed through the optimization of the component damage states to achieve the relationship among those damage states proposed in this paper and a normative model designed through the seismic design method based on Chinese codes. By comparing the experimental data of these two models, the relationship among the component damage states was discussed comprehensively, and the influences of those states on the overall seismic performance of the frame-core tube structure were analyzed. The proposed relationship among the component damage states in the optimization model can effectively limit the development of overall damage and improve the internal force response of the structure.

2010 ◽  
Vol 163-167 ◽  
pp. 1100-1106
Author(s):  
Jun Teng ◽  
Wei Liang Guo ◽  
Bai Sheng Rong ◽  
Zuo Hua Li ◽  
Zhi Jun Dong

Diagrid tube structures have advantages on constructing high-rise buildings for its great lateral stiffness, but its seismic design methodology researches are limited. The two-stage design method in Chinese code is not specific enough for the seismic fortification objectives of this kind of structures. It is necessary to propose some specific seismic performance objectives for the key components. Typical CFST diagrid tube-concrete core tube structures are studied by dynamic elastic-plastic time-history analysis using Perform-3D program. The structure plasticity developing process is summarized and the distribution characteristics of seismic fortification lines between tubes are discussed. The influences of main structure lateral stiffness related factors on the plasticity developing process are researched. The key components of structure lateral stiffness and plastic energy dissipation are studied. The seismic performance objectives of the key components are proposed for the three-level seismic fortification objectives.


Author(s):  
Wenpeng Wu ◽  
Shiguo Long ◽  
Huihui Li

<p>Seismic resistant retainer is an important component for seismic design of the medium‐small span bridges. However, it’s difficult for the bridge engineers to design a reasonable transverse retainer due to deficiency of design detail in most of current seismic design specifications. Therefore, this paper proposed a prestressed prefabricated concrete retainer that utilize the ultra‐high performance concrete (UHPC). Firstly, the structural characteristics and the seismic design method of the new proposed retainer is illustrated. The OpenSEES model of the case‐study bridge were simulated by considering three different types of seismic resistant retainers. A total of ten high intensity ground motions were selected to conduct the nonlinear time history analysis (NTHA). Subsequently, to investigate the seismic performance of the proposed UHPC retainer, this paper performs the comparative study of seismic responses for different bridge components. It is concluded that, the proposed retainer can provide excellent displacement capacity and help to reduce the seismic damage of bridge piers significantly. In addition, the new retainer has strong ability to keep self‐centering to help the bridge reducing the residual displacement of superstructure under strong seismic events. The proposed UHPC retainer is applicable to the rapid prestressed prefabricated construction process and has a clear load transfer mode under earthquake actions. Therefore, it is a good candidate to the multi‐level performance‐based seismic design of the medium‐small span bridges.</p>


2014 ◽  
Vol 584-586 ◽  
pp. 1841-1844
Author(s):  
Fang Fang Yang

Super high-rise building seismic design of complex shape is very important, can not be carried out according to the traditional design method. This paper gives a design principle based on behavior, it in the engineering design and more attention. Method based on behavior on the properties of reaction structures under earthquake is evaluated. High-rise buildings must be based on the method of state to confirm that the building to meet seismic performance.


2020 ◽  
Vol 165 ◽  
pp. 04034
Author(s):  
Hong Li

This article mainly analyses different representations of bridge seismic damage and their causes, discusses mostly the analytic means of bridge structures’ elastic-plastic earthquake response and the design method of ductile earthquake-resistance. In the end, the developing trends of the method in future are introduced, the suggestions of modifying the specification are given.


2011 ◽  
Vol 368-373 ◽  
pp. 1058-1063
Author(s):  
Li Yuan Bao ◽  
San Qing Su ◽  
Jun Feng Hou ◽  
Huan Guo

The complex tower structure appears as modeling of palms together, which is designed as steel frame-core tube structure. This paper uses SAP2000 to analysis seismic response respectively on the linear and elastic-plastic stage, and puts forward some specific suggestions for seismic design according to the analysis and calculation.


2011 ◽  
Vol 261-263 ◽  
pp. 1134-1138 ◽  
Author(s):  
Ying Sun ◽  
Shang Guan Ping ◽  
Yin Gu ◽  
Wei Dong Zhuo

In this paper, a simple and practical performance-based seismic design (PBSD) method for regular highway bridges is suggested. In the proposed PBSD method, the drift ratio of the bridge column is employed as quantitative indices of seismic performance levels, and its target values for each seismic performance level are given. The whole design processes of a regular highway bridge with various performance objects under different seismic levels are demonstrated.


2014 ◽  
Vol 919-921 ◽  
pp. 1043-1046
Author(s):  
Bo Song ◽  
Hai Long Wang ◽  
Shi Jing Liu

As many high-piled wharves are in an earthquake zone in home and abroad, so it is vitally important to conduct seismic design to ensure them with a certain seismic capacity. Studies showed that the wharves with straight piles have better seismic performance than wharves with oblique pile. According to the standards in China and Japan, this paper will compare the indicators of seismic performance, including the calculation length of piles, seismic inertial force, bearing capacity etc. The difference between Chinese code and Japanese code will be confirmed through comparison. The comparative results show that the differences mainly in the embedded solid position and the horizontal force etc. Additionally, according to the comparison of different depth of high-piled wharf, there is an increasing trend of the indicators with increasing depth of water.


2010 ◽  
Vol 163-167 ◽  
pp. 2005-2012 ◽  
Author(s):  
Jun Teng ◽  
Wei Liang Guo ◽  
Bai Sheng Rong ◽  
Zuo Hua Li

Diagrid tube structure system has advantages on constructing high-rise buildings due to its great stiffness, however, its seismic performance analysis are limited. 10 CFST diagrid tube-concrete core tube structures are analyzed by Mode-Pushover method using Perform-3D program. The plasticity developing process and components yield order are summarized. The force distribution between diagrid and core tubes is researched and the force redistribution reason is explained from the change of diagrid tube forces. The structure lateral stiffness degradation is discussed based on the developing process of diagrid and core tubes lateral stiffness. The influences of main lateral stiffness related factors on the structure plasticity developing process, force distribution and stiffness change of the tubes are discussed at last.


Sign in / Sign up

Export Citation Format

Share Document