scholarly journals An NFV-Based Energy Scheduling Algorithm for a 5G Enabled Fleet of Programmable Unmanned Aerial Vehicles

2019 ◽  
Vol 2019 ◽  
pp. 1-20 ◽  
Author(s):  
Christian Tipantuña ◽  
Xavier Hesselbach ◽  
Victor Sánchez-Aguero ◽  
Francisco Valera ◽  
Ivan Vidal ◽  
...  

The fifth generation of mobile networks (5G) is expected to provide diverse and stringent improvements such as greater connectivity, bandwidth, throughput, availability, improved coverage, and lower latency. Considering this, drones or Unmanned Aerial Vehicles (UAVs) and Internet of Things (IoT) devices are perfect examples of existing technology that can take advantage of the capabilities provided by 5G technology. In particular, UAVs are expected to be an important component of 5G networks implementations and support different communication requirements and applications. UAVs working together with 5G can potentially facilitate the deployment of standalone or complementary communications infrastructures, and, due to its rapid deployment, these solutions are suitable candidates to provide network services in emergency scenarios, natural disasters, and search and rescue missions. An important consideration in the deployment of a programmable drone fleet is to guarantee the reliability and performance of the services through consistent monitoring, control, and management scheme. In this regard, the Network Functions Virtualization (NFV) paradigm, a key technology within the 5G ecosystem, can be used to perform automation, management, and orchestration tasks. In addition, to ensure the coordination and reliability in the communications systems, considering that the UAVs have a finite lifetime and that eventually they must be replaced, a scheduling scheme is needed to guarantee the availability of services and efficient resource utilization. To this end, in this paper is presented an UAV scheduling scheme which leverages the potential offered by NFV. The proposed strategy, based on a brute-force search combinatorial algorithm, allows obtaining the optimal scheduling of UAVs in time, in order to efficiently deploy network services. Simulation results validate the performance of the proposed strategy, by providing the number of drones needed to meet certain levels of service availability. Furthermore, the strategy allows knowing the sequence of replacement of UAVs to ensure the optimal resource utilization.

2021 ◽  
Author(s):  
Gabriela L. Rodriguez-Cortes ◽  
Anabel Martinez-Vargas ◽  
Oscar H. Montiel-Ross ◽  
MA. Cosio-Leon ◽  
Daniela M. Martinez

2022 ◽  
Vol 2161 (1) ◽  
pp. 012058
Author(s):  
Laaboni Mukerjee ◽  
Mukul Yadav ◽  
Amit Choraria ◽  
Atharv Tendolkar ◽  
Arjun Hariharan ◽  
...  

Abstract The COVID-19 pandemic has laid bare the need for contactless operations. While unmanned aerial vehicles (UAVs) are being developed to aid humans in countless domains, the need for effective battery management and performance optimization remains a huge task. The proposed solution, the “AeroDock”, aims to tackle these challenges by using wireless power transfer (WPT) technology coupled with smart monitoring of the drone’s health. The performance and hardware checks are assessed at the user end via cloud computing and IoT technology. This system is contact-less, safe, reliable and its usage is not affected by external factors. Thus, the AeroDock is a smart docking station for UAVs which eliminates the need for human intervention in effective charging and maintenance.


2014 ◽  
Vol 2 (6) ◽  
pp. 4011-4029 ◽  
Author(s):  
D. Giordan ◽  
A. Manconi ◽  
A. Facello ◽  
M. Baldo ◽  
F. dell'Anese ◽  
...  

Abstract. In recent years, the use of Unmanned Aerial Vehicles (UAVs) in operations in civilian/commercial contexts is becoming increasingly common also for the applications concerning the anthropic and natural disasters. In this paper, we present the first results of a research project aimed at defining a possible methodology for the use of micro-UAVs in emergency scenarios relevant to rock fall phenomena. To develop and support the presented method, the case study results relative to a rock fall emergency occurred on 7 March 2014 in the San Germano municipality (north-western Italy) are presented and discussed.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Zohreh Bakhtiari ◽  
Rozita Jamili Oskouei ◽  
Mona Soleymani ◽  
Akhtar Hussain Jalbani

The routing process in vehicular ad hoc networks (VANETs) is a challenging task in urban areas which is due to the high mobility of vehicles, repetitive defects of the communication path, and the various barriers that may affect the reliability of data transmission and routing. Accordingly, the connectivity in vehicular communications has received the researchers’ attention, so different geographic routing protocols have been proposed in this respect. Unmanned aerial vehicles (UAVs) are useful for overcoming routing constraints. Cloud computing has also been defined as a new infrastructure for VANET which is made up of a significant number of computing nodes including stable data centers as well as a set of mobile computing devices embedded on vehicles. The aim of this research is to simulate a VANET in an urban area using cloud computing infrastructure and applying unmanned aerial vehicles (UAV) so that the negative influence of barriers in packet delivery and routing is avoided. To evaluate, the proposed method is compared with the basic protocol ClouDiV. Ns-2 simulation results show that the proposed method outperforms with different densities and variable times in terms of efficiency and performance.


2015 ◽  
Vol 9 (8) ◽  
pp. 1190-1196 ◽  
Author(s):  
Jonay Toledo ◽  
Daniel Perea ◽  
Leopoldo Acosta ◽  
Nestor Morales

Sign in / Sign up

Export Citation Format

Share Document