Distributed Control for Groups of Unmanned Aerial Vehicles Performing Surveillance Missions and Providing Relay Communication Network Services

2017 ◽  
Vol 92 (3-4) ◽  
pp. 645-656 ◽  
Author(s):  
R. S. de Moraes ◽  
E. P. de Freitas
2016 ◽  
Vol 2016 ◽  
pp. 1-12
Author(s):  
Mengji Shi ◽  
Kaiyu Qin

The paper provides a novel cooperative motion scheme for networked Unmanned Aerial Vehicles (UAVs) to fully sweep-cover a priori unknown elongated areas with curved borders, which are termed “valley areas.” The UAVs’ motion is confined between the borders. Different from former research on straight-corridor-sweep-coverage, in each valley area, the width of different portions varies dramatically: the UAVs need to line up across the valley area to achieve full coverage of the widest portions while they can only pass through the narrowest parts one by one in a queue. The UAVs are provided with barrier detection and inter-UAV communication. According to the scheme, a distributed control law has been offered for discrete-time multi-UAV systems, guaranteeing crash avoidance and full coverage while considering the constrained mobility of the UAVs. Regular and extreme simulations are carried out to verify the efficacy and stability of the proposed algorithm. Solutions to U-shaped valley coverage and the case of insufficient UAVs available are discussed with validation simulations. Comparison simulations are conducted with respect to a line-sweep-coverage algorithm developed by a closely related work, and differences in performance are revealed subsequently. Conclusions are drawn with possible directions of future research.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Shudao Zhou ◽  
Ao Shen ◽  
Min Wang ◽  
Shuling Peng ◽  
Zhanhua Liu

In order to make multirotor unmanned aerial vehicles (UAV) compose a desired dense formation and improve the practicality of UAV formation, a distributed algorithm based on fuzzy logic was proposed. The airflow created by multirotor UAVs was analyzed according to the structure of the multirotor UAV and the characteristic equation of the fluid. This paper presented a dynamic model for the process of formation of and path search algorithm based on this model. The membership function in this model combines the factors of position, flow field, and movement. Integrating the dynamic model and its desired position in formations, each UAV evaluates the surrounding points and then selects the direction for step motion. Through simulation, this algorithm was improved by a by-step formation approach, and the effectiveness of this method in dense formation of multirotor UAVs was proved.


2019 ◽  
Vol 2019 ◽  
pp. 1-20 ◽  
Author(s):  
Christian Tipantuña ◽  
Xavier Hesselbach ◽  
Victor Sánchez-Aguero ◽  
Francisco Valera ◽  
Ivan Vidal ◽  
...  

The fifth generation of mobile networks (5G) is expected to provide diverse and stringent improvements such as greater connectivity, bandwidth, throughput, availability, improved coverage, and lower latency. Considering this, drones or Unmanned Aerial Vehicles (UAVs) and Internet of Things (IoT) devices are perfect examples of existing technology that can take advantage of the capabilities provided by 5G technology. In particular, UAVs are expected to be an important component of 5G networks implementations and support different communication requirements and applications. UAVs working together with 5G can potentially facilitate the deployment of standalone or complementary communications infrastructures, and, due to its rapid deployment, these solutions are suitable candidates to provide network services in emergency scenarios, natural disasters, and search and rescue missions. An important consideration in the deployment of a programmable drone fleet is to guarantee the reliability and performance of the services through consistent monitoring, control, and management scheme. In this regard, the Network Functions Virtualization (NFV) paradigm, a key technology within the 5G ecosystem, can be used to perform automation, management, and orchestration tasks. In addition, to ensure the coordination and reliability in the communications systems, considering that the UAVs have a finite lifetime and that eventually they must be replaced, a scheduling scheme is needed to guarantee the availability of services and efficient resource utilization. To this end, in this paper is presented an UAV scheduling scheme which leverages the potential offered by NFV. The proposed strategy, based on a brute-force search combinatorial algorithm, allows obtaining the optimal scheduling of UAVs in time, in order to efficiently deploy network services. Simulation results validate the performance of the proposed strategy, by providing the number of drones needed to meet certain levels of service availability. Furthermore, the strategy allows knowing the sequence of replacement of UAVs to ensure the optimal resource utilization.


Author(s):  
A.A. Moykin ◽  
◽  
A.S. Medzhibovsky ◽  
S.A. Kriushin ◽  
M.V. Seleznev ◽  
...  

Nowadays, the creation of remotely-piloted aerial vehicles for various purposes is regarded as one of the most relevant and promising trends of aircraft development. FAU "25 State Research Institute of Chemmotology of the Ministry of Defense of the Russian Federation" have studied the operation features of aircraft piston engines and developed technical requirements for motor oil for piston four-stroke UAV engines, as well as a new engine oil M-5z/20 AERO in cooperation with NPP KVALITET, LLC. Based on the complex of qualification tests, the stated operational properties of the experimental-industrial batch of M-5z/20 AERO oil are generally confirmed.


Sign in / Sign up

Export Citation Format

Share Document