scholarly journals Spectral Expansion Method for Cloud Reliability Analysis

2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
K. Kotteswari ◽  
A. Bharathi

Cloud computing is a computing hypothesis, where a huge group of systems is linked together in private, public, or hybrid network, to offer dynamically amendable infrastructure for data storage, file storage, and application. With this emerging technology, application hosting, delivery, content storage, and reduced computation cost are achieved, and it acts as an essential module for the backbone of the Internet of Things (IoT). The efficiency of cloud service providers (CSP) could be improved by considering significant factors such as availability, reliability, usability, security, responsiveness, and elasticity. Assessment of these factors leads to efficiency in designing a scheduler for CSP. These metrics also improved the quality of service (QoS) in the cloud. Many existing models and approaches evaluate these metrics. But these existing approaches do not offer efficient outcome. In this paper, a prominent performance model named the “spectral expansion method (SPM)” evaluates cloud reliability. The spectral expansion method (SPM) is a huge technique useful in reliability and performance modelling of the computing system. This approach solves the Markov model of cloud service providers (CSP) to predict the reliability. The SPM is better compared to matrix-geometric methods.

Author(s):  
Vladimir Meikshan ◽  
◽  
Natalia Teslya ◽  

Benefits of using cloud technology are obvious, their application is expanding, as a result, it determines the steady growth of demand. Cloud computing has acquired particular relevance for large companies connected with Internet services, retailing, logistics that generate large volume of business and other information. The use of cloud technologies allows organizing the joint consumption of resources, solving the problems of storing and transferring significant amounts of data. Russian consumer cooperation refers to large territory distributed organizations actively forming their own digital ecosystem. The issue of data storing and processing for consumer coo-peration organizations is very relevant. At the same time, the prices of cloud service providers are significantly different and require solving the problem of minimizing the cost of storing and transferring significant amounts of data. The application of the linear programming method is considered to select the optimal data storage scheme for several cloud service providers having different technical and economic parameters of the package (maximum amount of storage, cost of allocated resources). Mathematical model includes the equation of costs for data storing and transferring and restrictions on the amount of storage, the amount of data and its safety. Software tool that allows to perform numerical calculations is selected Microsoft Excel in combination with the "search for solutions" add-on. In accordance with the mathematical model, the conditions for minimizing the amount of cloud storage costs and the necessary restrictions are established. Initial data are set for three data forming centers, storages of certain size for five cloud service providers and nominal price for information storage and transmission. Calculations of expenses are performed in several variants: without optimization, with the solution of the optimization problem, with price increase by cloud service providers. Results of the calculations confirm the necessity to solve the problem of minimizing the cost of cloud services for corporate clients. The presented model can be expanded for any cost conditions as well as for different areas of cloud applications.


2021 ◽  
Vol 13 (4) ◽  
pp. 75-83
Author(s):  
Dharmendra Singh Rajput ◽  
Praveen Kumar Reddy M. ◽  
Ramasubbareddy Somula ◽  
Bharath Bhushan S. ◽  
Ravi Kumar Poluru

Cloud computing is a quickly emerging computing model in the IT industry. Due to the rapid increase in technology, many clients want to store multiple copies of the same data in multiple data centers. Clients are outsourcing the data to cloud service providers and enjoying the high quality of service. Cloud service providers (CSP) are going to charge extra amounts for storing multiple copies; CSP must provide the firm guarantee for storing multiple copies. This paper proposes a new system model for storing and verifying multiple copies; this model deals with identifying tarnished copies which are transparent for the clients. Also, it deals with dynamic data control in the cloud with optimal results.


Cloud computing is a technology for sharing the resources for on demand request and for processing the data. It facilitates cloud storage for adopting cloud users with the help of cloud service providers. It enhances need of enterprises by adhering large volume of data to store and owned privately through third party auditors via data centres. The proposed system analyse cloud storage and provide free data storage for computing the data and maintain variety of cloud storage in one place. This scenario promotes storage of files in one system, so the user doesn’t require various accounts like GoogleDrive, Microsoft Onedrive and Dropbox. This application enhances multiple cloud storage for accessing all files in one particular storage area. The proposed system eradicates visiting of multiple sites for downloading the apps and reduces installing of multiple apps for downloading all the files. The work mainly focuses on the SaaS that permits users to upload data and share the resources from the cloud to post in the Web browser. Our work designed for creating single level of Application programming interface which is for all the cloud service providers. This adopts external applications that leverage the service of platform which is easier to build scalable, and automated cloud based applications. The final API promotes multiple cloud storage in one place and leads to provision Federated Cloud


2017 ◽  
Vol 16 (3) ◽  
pp. 6233-6239
Author(s):  
Stephen Rodriguez ◽  
Paolina Centonze

This journal article discusses our Dynamic Encryption Key Security Scheme (DEKSS) and the purpose it serves in providing a new security architecture for protecting databases used in technology stacks involving Mobile and Cloud based devices. Our security scheme is a novel architectural strategy that implements a full-stack architecture for the dispatching and management of data between several Cloud Service Providers (CSP) and any number of mobile devices. This strategy can promise data security needs for both mobile devices and cloud service providers without impacting the security requirements of the other party. While there are limitations in being truly secure, such as those recognized by WhiteHat security in their annual report[1], we believe that our security scheme can effectively circumvent potential threats and secure data through folding data using any number of encryption layers for every table and column of data to be stored. Through this approach, we have found our work to be applicable to a variety of different audiences within the cloud security space.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 317
Author(s):  
Chithambaramani Ramalingam ◽  
Prakash Mohan

The increasing demand for cloud computing has shifted business toward a huge demand for cloud services, which offer platform, software, and infrastructure for the day-to-day use of cloud consumers. Numerous new cloud service providers have been introduced to the market with unique features that assist service developers collaborate and migrate services among multiple cloud service providers to address the varying requirements of cloud consumers. Many interfaces and proprietary application programming interfaces (API) are available for migration and collaboration services among cloud providers, but lack standardization efforts. The target of the research work was to summarize the issues involved in semantic cloud portability and interoperability in the multi-cloud environment and define the standardization effort imminently needed for migrating and collaborating services in the multi-cloud environment.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 203591-203618
Author(s):  
Giuseppe Tricomi ◽  
Giovanni Merlino ◽  
Alfonso Panarello ◽  
Antonio Puliafito

Author(s):  
Nitin Vishnu Choudhari ◽  
Dr. Ashish B Sasankar

Abstract –Today Security issue is the topmost problem in the cloud computing environment. It leads to serious discomfort to the Governance and end-users. Numerous security solutions and policies are available however practically ineffective in use. Most of the security solutions are centered towards cloud technology and cloud service providers only and no consideration has been given to the Network, accessing, and device securities at the end-user level. The discomfort at the end-user level was left untreated. The security of the various public, private networks, variety of devices used by end-users, accessibility, and capacity of end-users is left untreated. This leads towards the strong need for the possible modification of the security architecture for data security at all levels and secured service delivery. This leads towards the strong need for the possible adaption of modified security measures and provisions, which shall provide secured hosting and service delivery at all levels and reduce the security gap between the cloud service providers and end-users. This paper investigates the study and analyze the security architecture in the Cloud environment of Govt. of India and suggest the modifications in the security architecture as per the changing scenario and to fulfill the future needs for the secured service delivery from central up to the end-user level. Keywords: Cloud Security, Security in GI Cloud, Cloud Security measures, Security Assessment in GI Cloud, Proposed Security for GI cloud


Sign in / Sign up

Export Citation Format

Share Document