scholarly journals Field Test and Numerical Simulation of Dynamic Compaction of High Embankment Filled with Soil-Rock

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Lu Zhang ◽  
Guangqing Yang ◽  
Dongliang Zhang ◽  
Zhijie Wang ◽  
Jing Jin

In view of the high filling height and large amount of soil and rock in the high-filled embankment, the variation law of the displacement field, stress field, and plastic zone of embankment body reinforced by dynamic compaction with different energy levels and the optimal compaction energy were analyzed by means of numerical simulations and field tests. Taking the embankment section of the Ping-Zan highway as an example, the construction scheme of dynamic compaction was designed, and the optimum tamping times and effective dynamic compaction depth of the embankment filled with soil-rock were obtained through the field test. The study showed that the displacement field and the stress field are redistributed after applying single-point compaction, and the volume of the shear plastic zone increases. The optimal number of slams for high-filled granular soil is 7 times, and the effective depth of dynamic compaction is 4.5 m. The result corresponds with that by the field test, which indicates that dynamic compaction is reasonable and has a significant effect on the high embankment filled with granular soil.

2014 ◽  
Vol 9 (4) ◽  
pp. 306-316 ◽  
Author(s):  
Rui Micaelo ◽  
Maria C. Azevedo ◽  
Jaime Ribeiro

The objective of this study is to determine the influence of field compaction conditions on hot-mix asphalt layers compaction. A large field test was carried out to assess the compaction degree variation under field conditions such as the type of layer, the temperature and the roller (weight and compaction mode). Compaction evolution with roller passes of two asphalt layers was assessed in-situ with a nuclear and a non-nuclear measurement device. The analysis of the compaction results with regression models showed that the temperature, the roller weight and the asphalt mixture are the most influential and that the frequency, for all dynamic compaction modes, is not relevant. Finishing compaction increases layer’s compaction degree up to 2%. The two different density gauges used in this study measured different compaction degree values.


2016 ◽  
Vol 2016 ◽  
pp. 1-10
Author(s):  
Bojan Žlender ◽  
Primož Jelušič

The purpose of this paper is to evaluate the optimal number of investigation points and each field test and laboratory test for a proper description of a building site. These optimal numbers are defined based on their minimum and maximum number and with the equivalent investigation ratio. The total increments of minimum and maximum number of investigation points for different building site conditions were determined. To facilitate the decision-making process for a number of investigation points, an Adaptive Network Fuzzy Inference System (ANFIS) was proposed. The obtained fuzzy inference system considers the influence of several entry parameters and computes the equivalent investigation ratio. The developed model (ANFIS-SI) can be applied to characterize any building site. The ANFIS-SI model takes into account project factors which are evaluated with a rating from 1 to 10. The model ANFIS-SI, with integrated recommendations can be used as a systematic decision support tool for engineers to evaluate the number of investigation points, field tests, and laboratory tests for a proper description of a building site. The determination of the optimal number of investigative points and the optimal number of each field test and laboratory test is presented on reference case.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1579
Author(s):  
Jie Song ◽  
Diyang Chen ◽  
Jing Wang ◽  
Yufeng Bi ◽  
Shang Liu ◽  
...  

The water inrush of the Shangjiawan karst tunnel is used to study the evolution pattern of precursor water inrush information in water-filled caves and to further reveal the matching mode of the information. The three-dimensional numerical method FLAC3D was used to simulate the evolution process of water inrush after damage to a water-blocking rock mass structure in a water-filled cave and to obtain the evolution pattern of precursor water-inrush information caused by the damage. The results show that the multifield response to the characteristic precursor information of the water-inrush pattern after the fracture of the water-blocking rock mass follows the order of stress-field displacement-field seepage-field. Further, the matching pattern of the information shows that the stress field increased first and then decreased, the displacement field always increased, and the seepage field increased first and then decreased.


Author(s):  
Yoon-Ho Cho ◽  
Terry Dossey ◽  
B. Frank Mccullough

The effect of coarse aggregate on pavement performance has been attributed to the volume of aggregate used in pavement construction. The different patterns of crack development for limestone (LS) and siliceous river gravel (SRG) are a typical example of aggregate-induced variable performance in continuously reinforced concrete pavement (CRCP). An attempt was made to find a reasonable solution for pavements with SRG. As a way to solve the performance problem observed from the SRG pavement, a blended aggregates mixture was suggested. Laboratory and field tests were performed to check the feasibility of their application in pavements. From the laboratory test, a 50:50 blending ratio was suggested after considering the effect on tensile strength and thermal coefficient of expansion. Field test sections were also constructed to verify previous performance observations for the two aggregates and to provide performance data for new variables such as blended aggregates and special curing methods. Unexpectedly, the blended mixture did not improve the performance of SRG pavement; rather it experienced worse cracking than SRG alone. A controlled experiment with additional field test sections is needed to verify or disprove this finding. The only definitive finding was that selection of aggregate in the concrete pavement is a vital consideration for the design of the pavement. The CRCP8 analytical program reasonably predicted crack spacing for both SRG and LS pavements, predicting mean crack spacing of 0.99 m (3.25 ft) for SRG and 1.98 m (6.41 ft) for the limestone. These values are somewhat below the actual spacing observed at 100 days. Data collected after the first winter period will be required to calibrate the program.


2014 ◽  
Vol 70 (7) ◽  
pp. 1285-1291 ◽  
Author(s):  
Jia-jia Deng ◽  
Liang-ming Pan ◽  
De-qi Chen ◽  
Yu-quan Dong ◽  
Cheng-mu Wang ◽  
...  

Aimed at cost saving and pollution reduction, a novel desulfurization wastewater evaporation treatment system (DWETS) for handling wet flue gas desulfurization (WFGD) wastewater of a coal-fired power plant was studied. The system's advantages include simple process, and less investment and space. The feasibility of this system has been proven and the appropriate position and number of nozzles, the spray droplet size and flue gas temperature limitation have been obtained by computational fluid dynamics (CFD) simulation. The simulation results show that a longer duct, smaller diameter and higher flue gas temperature could help to increase the evaporation rate. The optimal DWETS design of Shangdu plant is 100 μm droplet sprayed by two nozzles located at the long duct when the flue gas temperature is 130 °C. Field tests were carried out based on the simulation results. The effects of running DWETS on the downstream devices have been studied. The results show that DWETS has a positive impact on ash removal efficiency and does not have any negative impact on the electrostatic precipitator (ESP), flue gas heat exchanger and WFGD. The pH values of the slurry of WFGD slightly increase when the DWETS is running. The simulation and field test of the DWETS show that it is a feasible future technology for desulfurization wastewater treatment.


Author(s):  
M. W. Bo ◽  
Y. M. Na ◽  
A. Arulrajah ◽  
M. F. Chang

2021 ◽  
Vol 13 (10) ◽  
pp. 5708
Author(s):  
Bo-Ram Park ◽  
Ye-Seul Eom ◽  
Dong-Hee Choi ◽  
Dong-Hwa Kang

The purpose of this study was to evaluate outdoor PM2.5 infiltration into multifamily homes according to the building characteristics using regression models. Field test results from 23 multifamily homes were analyzed to investigate the infiltration factor and building characteristics including floor area, volume, outer surface area, building age, and airtightness. Correlation and regression analysis were then conducted to identify the building factor that is most strongly associated with the infiltration of outdoor PM2.5. The field tests revealed that the average PM2.5 infiltration factor was 0.71 (±0.19). The correlation analysis of the building characteristics and PM2.5 infiltration factor revealed that building airtightness metrics (ACH50, ELA/FA, and NL) had a statistically significant (p < 0.05) positive correlation (r = 0.70, 0.69, and 0.68, respectively) with the infiltration factor. Following the correlation analysis, a regression model for predicting PM2.5 infiltration based on the ACH50 airtightness index was proposed. The study confirmed that the outdoor-origin PM2.5 concentration in highly leaky units could be up to 1.59 times higher than that in airtight units.


1956 ◽  
Vol 23 (1) ◽  
pp. 91-96
Author(s):  
M. A. Biot

Abstract Equations of elasticity and consolidation for a porous elastic material containing a fluid have been previously established (1, 5). General solutions of these equations for the isotropic case are developed, giving directly the displacement field or the stress field in analogy with the Boussinesq-Papkovitch solution and the stress functions of the theory of elasticity. General properties of the solutions also are examined and the viewpoint of eigenfunctions in consolidation problems is introduced.


2017 ◽  
Vol 5 (3) ◽  
pp. 176 ◽  
Author(s):  
Carl J. Dunst

Findings from three field tests evaluations of early childhood intervention practitioner performance checklists and three parent practice guides are reported. Forty-two practitioners from three early childhood intervention programs reviewed the checklists and practice guides and made (1) social validity judgments of both products, (2) judgments of the compatibility of the checklists and practice guides, and (3) suggestions for improving the intervention products and materials. Results showed that practitioner feedback and suggestions yielded valuable information for improving the products where changes made in response to the practitioners’ social validity ratings and suggestions from the first field test had discernible effects on judgments and feedback of revised products. The importance of striving to develop intervention products and materials that are judged as socially important and acceptable is described.


Sign in / Sign up

Export Citation Format

Share Document