scholarly journals Evaluation of Retinal Pigment Epithelial Cell Cytotoxicity of Recombinant Tissue Plasminogen Activator Using Human-Induced Pluripotent Stem Cells

2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Hiroyuki Kamao ◽  
Atsushi Miki ◽  
Junichi Kiryu

Purpose. The evaluation of drug-induced cytotoxicity is of great importance for the clinical application of pharmaceutical products, and human-induced pluripotent stem cells (hiPSCs) have received considerable scrutiny as a cell source for in vitro cytotoxicity testing. The aim of this study is to validate the concept of cytotoxicity testing using hiPSC-derived retinal pigment epithelium (hiPSC-RPE) by comparing the responsiveness of human fetal RPE (hfRPE) and human RPE cell line (ARPE19) to recombinant tissue plasminogen activator (rtPA). Methods. HfRPE, two types of hiPSC-RPE, and ARPE19 were cultured in media with or without rtPA. A lactate dehydrogenase release assay was performed to investigate the dose- and time-dependent effects of rtPA on cell death. RPE function was evaluated by measuring the secretion of pigment epithelium-derived factor (PEDF) and vascular endothelial growth factor (VEGF) and RPE-specific gene expression. Results. Rates of cell damage in hfRPE and both hiPS-RPE were increased by rtPA supplementation (2000 and 4000 μg/ml) for 1 hour, whereas ARPE19 cell damage was increased by supplementation with rtPA at concentrations higher than 50 μg/ml. Although 100 μg/ml rtPA for 24 hours did not affect RPE cell function, sustained rtPA exposure induced prolonged cytotoxic effects in hfRPE and two hiPSC-RPE, but not ARPE19. Conclusion. The responsiveness of hiPSC-RPE to rtPA is similar to that of hfRPE in terms of cell death and cell function. Thus, hiPSC-RPE is a valuable cell source for in vitro cytotoxicity testing.

2018 ◽  
Vol 115 (15) ◽  
pp. 3936-3941 ◽  
Author(s):  
Masayuki Hata ◽  
Hanako O. Ikeda ◽  
Sachiko Iwai ◽  
Yuto Iida ◽  
Norimoto Gotoh ◽  
...  

Bietti’s crystalline dystrophy (BCD) is an intractable and progressive chorioretinal degenerative disease caused by mutations in the CYP4V2 gene, resulting in blindness in most patients. Although we and others have shown that retinal pigment epithelium (RPE) cells are primarily impaired in patients with BCD, the underlying mechanisms of RPE cell damage are still unclear because we lack access to appropriate disease models and to lesion-affected cells from patients with BCD. Here, we generated human RPE cells from induced pluripotent stem cells (iPSCs) derived from patients with BCD carrying a CYP4V2 mutation and successfully established an in vitro model of BCD, i.e., BCD patient-specific iPSC-RPE cells. In this model, RPE cells showed degenerative changes of vacuolated cytoplasm similar to those in postmortem specimens from patients with BCD. BCD iPSC-RPE cells exhibited lysosomal dysfunction and impairment of autophagy flux, followed by cell death. Lipidomic analyses revealed the accumulation of glucosylceramide and free cholesterol in BCD-affected cells. Notably, we found that reducing free cholesterol by cyclodextrins or δ-tocopherol in RPE cells rescued BCD phenotypes, whereas glucosylceramide reduction did not affect the BCD phenotype. Our data provide evidence that reducing intracellular free cholesterol may have therapeutic efficacy in patients with BCD.


2021 ◽  
Vol 13 ◽  
pp. 251584142199719
Author(s):  
Simranjeet Singh Grewal ◽  
Joseph J. Smith ◽  
Amanda-Jayne F. Carr

Bestrophinopathies are a group of clinically distinct inherited retinal dystrophies that typically affect the macular region, an area synonymous with central high acuity vision. This spectrum of disorders is caused by mutations in bestrophin1 ( BEST1), a protein thought to act as a Ca2+-activated Cl- channel in the retinal pigment epithelium (RPE) of the eye. Although bestrophinopathies are rare, over 250 individual pathological mutations have been identified in the BEST1 gene, with many reported to have various clinical expressivity and incomplete penetrance. With no current clinical treatments available for patients with bestrophinopathies, understanding the role of BEST1 in cells and the pathological pathways underlying disease has become a priority. Induced pluripotent stem cell (iPSC) technology is helping to uncover disease mechanisms and develop treatments for RPE diseases, like bestrophinopathies. Here, we provide a comprehensive review of the pathophysiology of bestrophinopathies and highlight how patient-derived iPSC-RPE are being used to test new genomic therapies in vitro.


Parasitologia ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 50-60
Author(s):  
Veronica Rodriguez Fernandez ◽  
Giovanni Casini ◽  
Fabrizio Bruschi

Ocular toxoplasmosis (OT) is caused by the parasite Toxoplasma gondii and affects many individuals throughout the world. Infection may occur through congenital or acquired routes. The parasites enter the blood circulation and reach both the retina and the retinal pigment epithelium, where they may cause cell damage and cell death. Different routes of access are used by T. gondii to reach the retina through the retinal endothelium: by transmission inside leukocytes, as free parasites through a paracellular route, or after endothelial cell infection. A main feature of OT is the induction of an important inflammatory state, and the course of infection has been shown to be influenced by the host immunogenetics. On the other hand, there is evidence that the T. gondii phenotype also has an impact on the distribution of the pathology in different areas. Although considerable knowledge has been acquired on OT, a deeper knowledge of its mechanisms is necessary to provide new, more targeted treatment strategies. In particular, in addition to in vitro and in vivo experimental models, organotypic, ex vivo retinal explants may be useful in this direction.


2008 ◽  
Vol 76 (4) ◽  
pp. 1358-1367 ◽  
Author(s):  
A. L. Moyer ◽  
R. T. Ramadan ◽  
J. Thurman ◽  
A. Burroughs ◽  
M. C. Callegan

ABSTRACT Most Bacillus cereus toxin production is controlled by the quorum-sensing-dependent, pleiotropic global regulator plcR, which contributes to the organism's virulence in the eye. The purpose of this study was to analyze the effects of B. cereus infection and plcR-regulated toxins on the barrier function of retinal pigment epithelium (RPE) cells, the primary cells of the blood-retina barrier. Human ARPE-19 cells were apically inoculated with wild-type or quorum-sensing-deficient B. cereus, and cytotoxicity was analyzed. plcR-regulated toxins were not required for B. cereus-induced RPE cytotoxicity, but these toxins did increase the rate of cell death, primarily by necrosis. B. cereus infection of polarized RPE cell monolayers resulted in increased barrier permeability, independent of plcR-regulated toxins. Loss of both occludin and ZO-1 expression occurred by 8 h postinfection, but alterations in tight junctions appeared to precede cytotoxicity. Of the several proinflammatory cytokines analyzed, only interleukin-6 was produced in response to B. cereus infection. These results demonstrate the deleterious effects of B. cereus infection on RPE barrier function and suggest that plcR-regulated toxins may not contribute significantly to RPE barrier permeability during infection.


Sign in / Sign up

Export Citation Format

Share Document