scholarly journals A Stairs Evacuation Model Considering the Pedestrian Merging Flows

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Xia Zhong Zheng ◽  
Dan Tian ◽  
Ming Zhang ◽  
Chaoran Hu ◽  
Liyang Tong

Pedestrian merging flows are common in a stairs evacuation process, which involves complex interactions among pedestrians that substantially restrict the efficiency of the stairs evacuation process. Analyzing the pedestrian merging flows process and improving the efficiency of stairs evacuation are urgent and essential tasks. A novel simplified stairs evacuation model for simulating and analyzing the stairs evacuation process, which considers the impact of merging flows, is proposed in this process. The dynamic pedestrian output rate of a floor platform is calculated by the number of pedestrians on the floor platform. The merging ratio determined by the design size of stairs is adopted to determine the ratio between the stairs pedestrian flow and the floor pedestrian flow in the pedestrian output rate of the floor platform. To evaluate the stairs evacuation process is divided into three stages based on the pedestrian merging flows process, and the evacuation time at each stage is computed by the dynamic pedestrian output rate of the floor platform. The stairs evacuation capacity is calculated by the evacuation time and the number of pedestrians. A case study of a six-floor building evacuation is investigated, and the reliability and feasibility of the proposed model is verified. By establishing different merging ratios, the optimal merging ratio is obtained by comparing the evacuation capacities of different merging ratios, which provides a reference of stairs design for designers.

2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Xia-zhong Zheng ◽  
Xue-ling Xie ◽  
Dan Tian ◽  
Jian-lan Zhou ◽  
Ming Zhang

In order to analyze the evacuation capacity of parallel double running stairs, a dozen stairs merging forms are set by investigation and statistics, and the improved agent-based evacuation model that considers the merging behavior is used to simulate the process of merging and evacuation in the stairs. The stairs evacuation capacity is related to the evacuation time and the robustness of stairs, and the evacuation time can be calculated by using the improved agent-based model based on computer simulation. The robustness of each merging form can be obtained according to the fluctuation degree of evacuation time under the different pedestrian flow. The evaluation model of stairs evacuation capacity is established by fusing the evacuation time and the robustness of stairs. Combined with the specific example to calculate the evacuation capacity of each stairs form, it is found that every merging form has different evacuation time and different robustness, and the evacuation time has not positive correlation with the robustness for the same form stairs. Meanwhile, the evacuation capacity of stairs is not related to the number of the floor entrances. Finally, the results show that the evacuation capacity of stairs is optimal when the floor entrances are close to out stairs in parallel double running stairs and suitable to the case where pedestrian flow and the change of pedestrian flow are large.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Yang Zhou ◽  
Tanghong Wu ◽  
Gaofan Zhang ◽  
Zichuan Fan

Emergency evacuation is an important issue in public security. To make a considerate plan, various situations are presented including blocking the accident area and letting the emergency access path available. In order to offer dynamic evacuation routes due to different circumstances, a multistory building evacuation model is proposed. Firstly, to analyse the patency of the building, an evacuation formula is applied after binary processing. The function of evacuation time and some other parameters is given by means of regression analysis. Secondly, the cellular automata (CA) algorithm was applied to illustrate the effect of the bottleneck. The response of evacuation time could be approximately optimized through calculating time step of the CA simulation. Finally, the value of maximum evacuation population density could be determined according to the analysis of CA simulation results, which was related to the switch state of the emergency channel. The emergency evacuation model was simulated by using the Louvre museum as an example. The results of the simulation presented some feasible evacuation routes in all kinds of situations. Furthermore, the functional relationship would also be given among evacuation time with the diversity of tourists, pedestrian density, and width of exits. It can give a different perspective that the multistory building evacuation model shows excellent adaptability to different circumstances.


SIMULATION ◽  
2012 ◽  
Vol 88 (12) ◽  
pp. 1522-1536 ◽  
Author(s):  
M Marzouk ◽  
I Bakry ◽  
M El-Said

The aim of this research is to provide a tool for assessing the impact of applying lean principles to the design process at construction consultancy firms. Through several interviews, a comprehensive model was built to simulate the design process, using data from a leading consultancy firm in Egypt. The model contains the main processes and activities that form different phases of the design process and depicts the interconnectivity of processes and activities needed to create a complete design package upon client request. The research describes how the five main lean principles are integrated in the model. A case study is considered to demonstrate the effect of using the proposed model on the design process and to illustrate how the design process performs differently when lean principles are introduced. Case study output analysis reveals 40% improvement in the lean process performance measured in terms of activity utilization rates.


2015 ◽  
Vol 1092-1093 ◽  
pp. 375-380
Author(s):  
Suthida Ruayariyasub ◽  
Sompon Sirisumrannukul ◽  
Suksan Wangsatitwong

This paper investigates the impact of electric vehicles battery charging on the distribution system load if electric vehicles (EVs) are widespread used on roads. Stochastic approach based on a Monte Carlo method is developed in this study to simulate EVs charging load in two cases: 1) normal charge service at home, and 2) quick charge service at public charging stations. To demonstrate the model, a 22-kV distribution system of Pattaya City operated by Provincial Electricity Authority of Thailand (PEA) is employed in the case study. The results indicate the capability of the proposed model to exhibit the impact of EVs charging load on the local distribution system.


2020 ◽  
Vol 3 (1) ◽  
pp. 15-31
Author(s):  
Muhammad Baqi Mustaghfiri

This paper aims for several research objectives. It aims to find out the agribusiness sectors developed by Al-Mawaddah Entrepreneurial Pesantren. It also aims to find out the empowerment of agribusiness developed by this pesantren. Last, it also aims to determine the impact of empowering agribusiness developed on improving the economy Al-Mawaddah Entrepreneurial Pesantren’s alumni. This research is a field research. The approach used by researcher is a qualitative descriptive approach with a case study strategy. Research location is at Pesantren Entrepreneur Al-Mawaddah Honggosoco Kudus RT. 06/ RW. 01, Jekulo District, Kudus Regency. Data collection techniques used are observation, interviews, and documentation. The data analysis technique used is descriptive qualitative. The results show that: (1) the agribusiness sector that was developed at Al-Mawaddah Entrepreneurial Pesantren touched only agriculture and educational sectors. It yet touches other agribusiness sectors, such as fisheries or livestock. The agricultural sector developed includes: agricultural food crops, such as: rice, corn, soybeans, vegetables, and cassava, fruit crops, such as: longan, and dragon fruit. They even plant within the premise sugar cane plantation; (2) Agribusiness Empowerment developed by Al-Mawaddah Entrepreneurial Pesantren consists of three stages, namely: input, process, and output; (3) Agribusiness entrepreneurship is better than working under other people (companies) because apart from freedom, the income generated is also higher.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Zhengtao Qin ◽  
Jing Zhao ◽  
Shidong Liang ◽  
Jiao Yao

Many intersections around the world are irregular crossings where the approach and exit lanes are offset or the two roads cross at oblique angles. These irregular intersections often confuse drivers and greatly affect operational efficiency. Although guideline markings are recommended in many design manuals and codes on traffic signs and markings to address these problems, the effectiveness and application conditions are ambiguous. The research goal was to analyze the impact of guideline markings on the saturation flow rate at signalized intersections. An adjustment estimation model was established based on field data collected at 33 intersections in Shanghai, China. The proposed model was validated using a before–after case study. The underlying reasons for the impact of intersection guideline markings on the saturation flow rate are discussed. The results reveal that the improvement in the saturation flow rate obtained from painting guide line markings is positively correlated with the number of traffic lanes, offset of through movement, and turning angle of left-turns. On average, improvements of 7.0% and 10.3% can be obtained for through and left-turn movements, respectively.


2004 ◽  
Vol 19 (1) ◽  
pp. 37-45 ◽  
Author(s):  
Shabtai Noy

AbstractTraumatic stress stems from a threat to an individual's or a group's very existence. The impact of the existential threat may be compounded by an inability to cope, which affects the perception of helplessness and loss of lawfulness. A model is proposed in which the traumatic process is conceptualized to develop through three stages: (1) alert; (2) impact; and (3) post-trauma. In this model, treatment of traumatic stress emphasizes the need to control and expand life, and to achieve lawfulness and meaningfulness. In the proposed model of treatment, there are essential differences at each of the stages of the traumatic process: (1) primary prevention at the stage of alert focuses on planning strategies for coping; (2) secondary prevention at the stage of impact is based on forward treatment and debriefing; and (3) tertiary treatment at the post-trauma stage attends to coping with internal chaos and arbitrariness.


DYNA ◽  
2020 ◽  
Vol 87 (212) ◽  
pp. 179-188 ◽  
Author(s):  
Néstor Raúl Ortíz Pimiento ◽  
Francisco Javier Diaz Serna

New product development projects (NPDP) face different risks that may affect the scheduling. In this article, the purpose was to develop an optimization model to solve the RCPSP in NPDP and obtain a robust baseline for the project. The proposed model includes three stages: the identification of the project’s risks, an estimation of activities’ duration, and the resolution of an integer linear program. Two versions of the model were designed and compared in order to select the best one. The first version uses a method to estimate the activities’ duration based on the expected value of the impact of the risks and the second version uses a method based on the judgmental risk analysis process. Finally, the two version of the model were applied to a case study and the best version of the model was identified using a robustness indicator that analyses the start times of the baselines generated.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Peng Han ◽  
Jinkuan Wang ◽  
Yan Li ◽  
Yinghua Han

The large adoption of electric vehicles (EVs), hybrid renewable energy systems (HRESs), and the increasing of the loads shall bring significant challenges to the microgrid. The methodology to model microgrid with high EVs and HRESs penetrations is the key to EVs adoption assessment and optimized HRESs deployment. However, considering the complex interactions of the microgrid containing massive EVs and HRESs, any previous single modelling approaches are insufficient. Therefore in this paper, the methodology named Hierarchical Agent-based Integrated Modelling Approach (HAIMA) is proposed. With the effective integration of the agent-based modelling with other advanced modelling approaches, the proposed approach theoretically contributes to a new microgrid model hierarchically constituted by microgrid management layer, component layer, and event layer. Then the HAIMA further links the key parameters and interconnects them to achieve the interactions of the whole model. Furthermore, HAIMA practically contributes to a comprehensive microgrid operation system, through which the assessment of the proposed model and the impact of the EVs adoption are achieved. Simulations show that the proposed HAIMA methodology will be beneficial for the microgrid study and EV’s operation assessment and shall be further utilized for the energy management, electricity consumption prediction, the EV scheduling control, and HRES deployment optimization.


2014 ◽  
Vol 8 (1) ◽  
pp. 580-588
Author(s):  
Wang Fei ◽  
Pan Wenxia ◽  
Quan Rui

In this paper, a deterministic security-constrained unit commitment (SCUC) model is deployed in order to optimize generation output and allocation for spinning reserve considering different wind power dispatch modes. In this model, the scheduling of power plants takes into account a simultaneous clearing of power, reserve capacity requirement and CO2 emission and so on. Spinning reserve is modelled as an exogenous parameter which represents load uncertainty and wind power uncertainty. Special attention in the study is given to determine the impact of different dispatch modes with wind power and different levels of spinning reserve requirement on system operation and costs. The proposed model can be formulated as a mixed-integer problem (MIP) and solved in GAMS by using the CPLEX optimizer. The model is applied to a wind-fired intensive power system for three case studies. The results include the optimal spinning reserve and generator output of each generator, CO2 emission cost and cost of wind power for each case study. The results show that taking wind power as a control option can improves system operation and costs if wind generation and traditional sources generation are coordinated properly.


Sign in / Sign up

Export Citation Format

Share Document