scholarly journals A Multistory Building Evacuation Model Based on Multiple-Factor Analysis

2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Yang Zhou ◽  
Tanghong Wu ◽  
Gaofan Zhang ◽  
Zichuan Fan

Emergency evacuation is an important issue in public security. To make a considerate plan, various situations are presented including blocking the accident area and letting the emergency access path available. In order to offer dynamic evacuation routes due to different circumstances, a multistory building evacuation model is proposed. Firstly, to analyse the patency of the building, an evacuation formula is applied after binary processing. The function of evacuation time and some other parameters is given by means of regression analysis. Secondly, the cellular automata (CA) algorithm was applied to illustrate the effect of the bottleneck. The response of evacuation time could be approximately optimized through calculating time step of the CA simulation. Finally, the value of maximum evacuation population density could be determined according to the analysis of CA simulation results, which was related to the switch state of the emergency channel. The emergency evacuation model was simulated by using the Louvre museum as an example. The results of the simulation presented some feasible evacuation routes in all kinds of situations. Furthermore, the functional relationship would also be given among evacuation time with the diversity of tourists, pedestrian density, and width of exits. It can give a different perspective that the multistory building evacuation model shows excellent adaptability to different circumstances.


2011 ◽  
Vol 6 (6) ◽  
pp. 568-580
Author(s):  
Edgar C. L. Pang ◽  
◽  
Wan-Ki Chow

Emergency evacuation for supertall buildings with heights over 200 m require a very long time for occupants to travel down the buildings. Occupants might jam into protected lobbies and staircases, extending the waiting time. There is not yet any code requirement specifically for emergency evacuation in supertall buildings, which are criticized for using the same codes for buildings with normal heights. Further, the evacuation design for several existing supertall buildings does not even follow prescriptive fire-safety codes. The underlying problems have not yet been addressed by thorough studies. Evacuation in such tall buildings in Hong Kong will be studied in this paper. The assumptions made in the local prescriptive codes for safe egress will be justified. Three buildings with evacuation design complying with the local codes are considered as examples. A commercial building, a hotel, and a residential block in Hong Kong are taken as examples. The key design parameters in the local codes are for 40 people evacuating with a flow rate of 1.1 person/s through the staircase between typical floors. The evacuation time from each floor to the protected lobby is assumed to be within 5 min. The evacuation times in different scenarios with these assumptions are calculated. Such assumptions do not hold under a high occupant load. The total evacuation time would be extended significantly when the travelling flows of occupants are blocked in any of the evacuation routes. Different fire-safety management schemes with staged evacuation, such as assigning higher priorities to evacuate lower or upper floors first, are evaluated. The results observed for safe egress are then discussed.



2009 ◽  
Vol 192 (2) ◽  
pp. 692-699 ◽  
Author(s):  
Salvador Casadesús Pursals ◽  
Federico Garriga Garzón


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Yameng Chen ◽  
Chen Wang ◽  
Jeffrey Boon Hui Yap ◽  
Heng Li ◽  
Hong Song Hu ◽  
...  

There were increasing concerns on the possibility and suitability of using elevators for high-rise building evacuation because, through the improvement of the elevator system, the self-evacuation ability of age people is promoted as much as possible in the process of an emergency evacuation. The combined evacuation using both elevators and stairs was put into discussion. However, there was no empirical evidence and numerical simulation on emergency evacuation using both elevators and staircases for aging people in high-rise nursing homes. Therefore, using one case study, this paper simulated the emergency evacuation in a high-rise nursing home using variables such as the distribution of the elderly with different physical conditions, the proportion of the elderly in different physical conditions, the number of the elderly, the number of floors, the number of elevators used, and the priority of the elevator floor. By simulating the evacuation process in various scenarios, the general distribution strategy of high-rise nursing home and the optimal use of the elevator-stair combination during the emergency evacuation were developed. Results show that the elevator-stair combination of evacuation is more effective than using elevators or stairs alone. Increasing the number and speed of elevators can reduce evacuation time. Categorizing elderly people on each floor according to their physical conditions could reduce the evacuation time than randomly distributing them.



2021 ◽  
Vol 342 ◽  
pp. 01013
Author(s):  
Marius Cornel Şuvar ◽  
Vlad Mihai Păsculescu ◽  
Alin Irimia ◽  
Dragoş Păsculescu

In everyday life, several situations can be mentioned in which a building or a complex of buildings may require emergency evacuation: fires, chemical leaks, release of toxic or explosive gases, explosions, violent behavior, or threats with weapons/bombs. To calculate the time needed for building evacuation, numerical models are used to simulate this process of movement of groups of people, in a closed physical space. Algorithms for access path and exit selection use both properties of the crowds model and the individual interaction between event and people. The pandemic context has raised several questions about the safe use of buildings, given the presence of the risk of disease transmission. The policies adopted in the last year regarding the use of buildings, establishing access flows, and social distance, vary within great limits, being specific to each state and based on the analysis of the virus transmission rate rather than on risk assessments at the building level. The paper aims to present the main challenges to which the models of emergency evacuation, must respond, especially those considering social distancing and interaction between individuals, within a given distance, all to minimize the risk of disease transmission during the evacuation process of the building.



2021 ◽  
Author(s):  
Mufeng XIAO ◽  
Xihua ZHOU ◽  
Xinxin PAN ◽  
Yanan WANG ◽  
Xianlin LI ◽  
...  

Abstract To ensure the safe construction of prefabricated buildings and improve the efficiency of the safe evacuation of construction personnel after a fire caused by improper operation during construction, this study used the PyroSim software to numerically simulate a fire situation based on the size and volume of a prefabricated building construction site. The variation rules of smoke visibility, CO concentration, and ambient temperature in the construction site of prefabricated buildings were analyzed and the available safe evacuation time was determined. Moreover, the Pathfinder software was used for simulation in combination with the physical attributes of personnel, evacuation speed, and personnel proportions. The time required for safe evacuation was determined and the factors influencing the evacuation time, such as the quantity and location of stacked prefabricated components, machinery, and appliances, and the number of on-site construction personnel, were analyzed. The results reveal that the original layout of the prefabricated building construction site cannot facilitate the safe evacuation of all construction personnel. The bottleneck area for the evacuation of construction personnel is the indoor corridor and evacuation stairway. The quantity and location of stacked items at the construction site greatly influence the evacuation time. When the number of construction personnel on each floor reaches a certain value, restrictions should be imposed. The results obtained by this study can provide the theoretical basis for the rational planning of evacuation routes and construction site management.



2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Xia Zhong Zheng ◽  
Dan Tian ◽  
Ming Zhang ◽  
Chaoran Hu ◽  
Liyang Tong

Pedestrian merging flows are common in a stairs evacuation process, which involves complex interactions among pedestrians that substantially restrict the efficiency of the stairs evacuation process. Analyzing the pedestrian merging flows process and improving the efficiency of stairs evacuation are urgent and essential tasks. A novel simplified stairs evacuation model for simulating and analyzing the stairs evacuation process, which considers the impact of merging flows, is proposed in this process. The dynamic pedestrian output rate of a floor platform is calculated by the number of pedestrians on the floor platform. The merging ratio determined by the design size of stairs is adopted to determine the ratio between the stairs pedestrian flow and the floor pedestrian flow in the pedestrian output rate of the floor platform. To evaluate the stairs evacuation process is divided into three stages based on the pedestrian merging flows process, and the evacuation time at each stage is computed by the dynamic pedestrian output rate of the floor platform. The stairs evacuation capacity is calculated by the evacuation time and the number of pedestrians. A case study of a six-floor building evacuation is investigated, and the reliability and feasibility of the proposed model is verified. By establishing different merging ratios, the optimal merging ratio is obtained by comparing the evacuation capacities of different merging ratios, which provides a reference of stairs design for designers.





Author(s):  
Jianfang Yang ◽  
Hao Lin ◽  
Junbiao Guan

In many public spaces (e.g. colleges and shopping malls), people are frequently distributed discretely, and thus, single-source evacuation, which means there’s only one point of origin, is not always a feasible solution. Hence, this paper discusses a multi-source evacuation model and algorithm, which are intended to evacuate all the people that are trapped within the minimum possible time. This study presents a fast flow algorithm to prioritize the most time-consuming source point under the constraint of route and exit capacity to reduce the evacuation time. This fast flow algorithm overcomes the deficiencies in the existing global optimization fast flow algorithm and capacity constrained route planner (CCRP) algorithm. For the fast flow algorithm, the first step is to determine the optimal solution to single-source evacuation and use the evacuation time of the most time-consuming source and exit gate set as the initial solution. The second step is to determine a multi-source evacuation solution by updating the lower limit of the current evacuation time and the exit gate set continually. The final step is to verify the effectiveness and feasibility of the algorithm through comparison.



2018 ◽  
Vol 97 ◽  
pp. 82-95 ◽  
Author(s):  
Alan Poulos ◽  
Felipe Tocornal ◽  
Juan Carlos de la Llera ◽  
Judith Mitrani-Reiser


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Xia-zhong Zheng ◽  
Xue-ling Xie ◽  
Dan Tian ◽  
Jian-lan Zhou ◽  
Ming Zhang

In order to analyze the evacuation capacity of parallel double running stairs, a dozen stairs merging forms are set by investigation and statistics, and the improved agent-based evacuation model that considers the merging behavior is used to simulate the process of merging and evacuation in the stairs. The stairs evacuation capacity is related to the evacuation time and the robustness of stairs, and the evacuation time can be calculated by using the improved agent-based model based on computer simulation. The robustness of each merging form can be obtained according to the fluctuation degree of evacuation time under the different pedestrian flow. The evaluation model of stairs evacuation capacity is established by fusing the evacuation time and the robustness of stairs. Combined with the specific example to calculate the evacuation capacity of each stairs form, it is found that every merging form has different evacuation time and different robustness, and the evacuation time has not positive correlation with the robustness for the same form stairs. Meanwhile, the evacuation capacity of stairs is not related to the number of the floor entrances. Finally, the results show that the evacuation capacity of stairs is optimal when the floor entrances are close to out stairs in parallel double running stairs and suitable to the case where pedestrian flow and the change of pedestrian flow are large.



Sign in / Sign up

Export Citation Format

Share Document