scholarly journals Synchronous Acquisition and Analysis of Ultrasonic Spectral Information for the Characterization of Particle Size Distribution

2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Nan Jia ◽  
Jianfei Gu ◽  
Huinan Yang ◽  
Mingxu Su

Particle sizing methods have gained considerable attention in the past few decades, but there is still a big challenge in high concentration situations (i.e., volume fraction>10%). However, the ultrasonic spectroscopy technique is a common tool for the noninvasive determination of essential parameters for high concentration systems by analyzing ultrasonic spectra with inversion algorithms, including the particle size distribution (PSD), volume fraction of each phase, and physicochemical properties. For the ultrasonic measurements, proper acquisition and analysis of ultrasonic spectra are becoming significant in order to understand the relationship between the unknown parameters and the ultrasonic spectra. In the work, an experimental setup was provided to synchronously acquire ultrasonic reflection and transmission signals. A series of experiments were performed on silicon-water solutions at volume fractions 8%, 10%, and 12% to obtain the ultrasonic attenuation spectra and ultrasonic phase velocity spectra based on different measurement methods, i.e., the pulse-echo method, reference reflection method, and through-transmission method, respectively. Based on the Epstein-Carhart-Allegra-Hawley (ECAH) forward model, genetic algorithm (GA) and optimum regularization technique (ORT) algorithms were implemented to determine PSD with the measured spectra; the obtained PSD was then compared with the optical microscope method. It revealed that the spectra obtained by different measurement methods showed individual features while the obtained PSD was consistent and the volume median diameters were within a deviation of 10% with GA and ORT algorithms. The differences and characteristics of these three measurement methods for signal acquisition and interpretation were discussed and presented to provide an evaluation and recommendation for ultrasonic particle sizing.

2012 ◽  
Vol 16 (5) ◽  
pp. 1391-1394 ◽  
Author(s):  
Kun Zhou

A new Monte Carlo method termed Comb-like frame Monte Carlo is developed to simulate the soot dynamics. Detailed stochastic error analysis is provided. Comb-like frame Monte Carlo is coupled with the gas phase solver Chemkin II to simulate soot formation in a 1-D premixed burner stabilized flame. The simulated soot number density, volume fraction, and particle size distribution all agree well with the measurement available in literature. The origin of the bimodal distribution of particle size distribution is revealed with quantitative proof.


2011 ◽  
Vol 105-107 ◽  
pp. 2113-2116
Author(s):  
Hong Tang ◽  
Wen Bin Zheng

Particulate flow is commonly encountered in industries as well as in many other chemical and mechanical engineering applications. The accurate measurement of particle size distribution is of the utmost importance since it decides the physical and chemical characteristic of the particles. The light extinction method can be used for in-line monitoring of particle systems thus providing real time measurements of both particle size distribution and particle concentration. In light extinction particle sizing, a classification inversion algorithm is proposed for the circular cylinder particles. The measured circular cylinder particle system is inversed with different particle distribution functions and classified according to the inversion errors in the dependent model. The simulation experiments illustrate that it is feasible to use the inversion errors of object functions to inverse the circular cylinder particle size distribution in the light extinction particle sizing technique. This classing inversion algorithm can avoid the defects that the type of the size distribution must be assumed beforehand for the light extinction method.


2016 ◽  
Vol 848 ◽  
pp. 593-606 ◽  
Author(s):  
Jiang Li Ning ◽  
Yun Li Feng ◽  
Jie Li

The Hall-Petch relation in a spheroidized steel with bimodal cementite particle size distribution has been investigated in this study, with an emphasis on considering the effect of the large particles at ferrite grain boundaries and triple junctions. A medium carbon steel was processed by variable thermomechanical procedures to achieve spheroidized structures with different combinations of microstructrual parameters, but all exhibiting a bimodal particle size distribution, in which large intergranular particles and small intragranular particles coexisted in the ferrite matrix. A quantitative relationship between the Hall-Petch parameter ky and the volume fraction of the intergranular cementite particles is presented, by considering a composite model. The contribution of the large intergranular particles to grain boundary strengthening wa substantiated by the increment of the ky parameter, since the average orientation factor of the composite, is increased. After correction of the ky parameters based on the constants from literatures, the predicted stresses show good agreement with the experimental stresses. A linear fit between the experimental stresses and the reciprocal square root of grain sizes is performed, the slope constant ky derived agrees to within 11 % of the corrected ky parameters based on the constants from literatures.


2010 ◽  
Vol 638-642 ◽  
pp. 3925-3930 ◽  
Author(s):  
K.G. Wang ◽  
X. Ding

The dynamics of phase coarsening at ultra-high volume fractions is studied based on two-dimensional phase-field simulations by numerically solving the time-dependent Ginzburg-Landau and Cahn-Hilliard equations. The kinetics of phase coarsening at ultra-high volume fractions is discovered. The microstructural evolutions for different ultra-high volume fractions are shown. The scaled particle size distribution as functions of the dispersoid volume fraction is presented. The particle size distribution derived from our simulation at ultra-high volume fractions is close to Wagner's particle size distribution due to interface-controlled ripening rather than Hillert's grain size distribution in grain growth. The changes of shapes of particles are carefully studied with increase of volume fraction. It is found that more liquid-filled triple junctions are formed as a result of particle shape accommodation with increase of volume fraction at the regime of ultra-high volume fraction.


2008 ◽  
Vol 18 (10) ◽  
pp. 1741-1785 ◽  
Author(s):  
RAIMUND BÜRGER ◽  
ANTONIO GARCIA ◽  
MATTHIAS KUNIK

Polydisperse suspensions with particles of a finite number N of size classes have been widely studied in laboratory experiments. However, in most real-world applications the particle sizes are distributed continuously. In this paper, a well-studied one-dimensional kinematic model for batch sedimentation of polydisperse suspensions of small equal-density spheres is extended to suspensions with a continuous particle size distribution. For this purpose, the phase density function Φ = Φ(t, x, ξ), where ξ ∈ [0, 1] is the normalized squared size of the particles, is introduced, whose integral with respect to ξ on an interval [ξ1, ξ2] is equivalent to the volume fraction at (t, x) occupied by particles of that size range. Combining the Masliyah–Lockett–Bassoon (MLB) model for the solid-fluid relative velocity for each solids species with the concept of phase density function yields a scalar, first-order equation for Φ, namely the equation of the generalized kinetic theory. Three numerical schemes for the solution of this equation are introduced, and a numerical example and an L1 error study show that one of these schemes introduces less numerical diffusion and less spurious oscillations near discontinuities than the others. Several numerical examples illustrate the simulated behavior of this kind of suspensions. Numerical results also illustrate the solution of an eigenvalue problem associated with the equation of the generalized kinetic theory.


Sign in / Sign up

Export Citation Format

Share Document