Simulating Phase Coarsening of Ultra-High Volume Fractions

2010 ◽  
Vol 638-642 ◽  
pp. 3925-3930 ◽  
Author(s):  
K.G. Wang ◽  
X. Ding

The dynamics of phase coarsening at ultra-high volume fractions is studied based on two-dimensional phase-field simulations by numerically solving the time-dependent Ginzburg-Landau and Cahn-Hilliard equations. The kinetics of phase coarsening at ultra-high volume fractions is discovered. The microstructural evolutions for different ultra-high volume fractions are shown. The scaled particle size distribution as functions of the dispersoid volume fraction is presented. The particle size distribution derived from our simulation at ultra-high volume fractions is close to Wagner's particle size distribution due to interface-controlled ripening rather than Hillert's grain size distribution in grain growth. The changes of shapes of particles are carefully studied with increase of volume fraction. It is found that more liquid-filled triple junctions are formed as a result of particle shape accommodation with increase of volume fraction at the regime of ultra-high volume fraction.

2016 ◽  
Vol 848 ◽  
pp. 593-606 ◽  
Author(s):  
Jiang Li Ning ◽  
Yun Li Feng ◽  
Jie Li

The Hall-Petch relation in a spheroidized steel with bimodal cementite particle size distribution has been investigated in this study, with an emphasis on considering the effect of the large particles at ferrite grain boundaries and triple junctions. A medium carbon steel was processed by variable thermomechanical procedures to achieve spheroidized structures with different combinations of microstructrual parameters, but all exhibiting a bimodal particle size distribution, in which large intergranular particles and small intragranular particles coexisted in the ferrite matrix. A quantitative relationship between the Hall-Petch parameter ky and the volume fraction of the intergranular cementite particles is presented, by considering a composite model. The contribution of the large intergranular particles to grain boundary strengthening wa substantiated by the increment of the ky parameter, since the average orientation factor of the composite, is increased. After correction of the ky parameters based on the constants from literatures, the predicted stresses show good agreement with the experimental stresses. A linear fit between the experimental stresses and the reciprocal square root of grain sizes is performed, the slope constant ky derived agrees to within 11 % of the corrected ky parameters based on the constants from literatures.


Author(s):  
Li Bao ◽  
Ting-an Zhang ◽  
Weimin Long ◽  
Anh V. Nguyen ◽  
Guozhi Lv ◽  
...  

2012 ◽  
Vol 16 (5) ◽  
pp. 1391-1394 ◽  
Author(s):  
Kun Zhou

A new Monte Carlo method termed Comb-like frame Monte Carlo is developed to simulate the soot dynamics. Detailed stochastic error analysis is provided. Comb-like frame Monte Carlo is coupled with the gas phase solver Chemkin II to simulate soot formation in a 1-D premixed burner stabilized flame. The simulated soot number density, volume fraction, and particle size distribution all agree well with the measurement available in literature. The origin of the bimodal distribution of particle size distribution is revealed with quantitative proof.


2018 ◽  
Vol 20 (2) ◽  
pp. 51
Author(s):  
Antoni . ◽  
Hendra Surya Wibawa ◽  
Djwantoro Hardjito

This study evaluates the effect of particle size distribution (PSD) of high calcium fly ash on high volume fly ash (HVFA) mortar characteristics. Four PSD variations of high calcium fly ash used were: unclassified fly ash and fly ash passing sieve No. 200, No. 325 and No. 400, respectively. The fly ash replacement ratio of the cementitious material ranged between 50-70%. The results show that with smaller fly ash particles size and higher levels of fly ash replacement, the workability of the mixture was increased with longer setting time. There was an increase in mortar compressive strength with finer fly ash particle size, compared to those with unclassified ones, with the highest strength was found at those with fly ash passing mesh No. 325. The increase was found due to better compactability of the mixture. Higher fly ash replacement reduced the mortar’s compressive strength, however, the rate was reduced when finer fly ash particles was used.


Sign in / Sign up

Export Citation Format

Share Document