scholarly journals ECG-Based Subject Identification Using Common Spatial Pattern and SVM

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Turky N. Alotaiby ◽  
Saleh A. Alshebeili ◽  
Latifah M. Aljafar ◽  
Waleed M. Alsabhan

In this paper, a nonfiducial electrocardiogram (ECG, the process of recording the electrical activity of the heart over a period of time using electrodes placed on the skin) identification system based on the common spatial pattern (CSP) feature extraction technique is presented. The single- and multilead ECG signals of each subject are divided into nonoverlapping segments, and different segment lengths (1, 3, 5, 7, 10, or 15 seconds) are investigated. Features are extracted from each signal segment through projection on a CSP projection matrix. The extracted features are then used to train a radial basis function kernel-based Support Vector Machine (SVM) classifier, which is then employed in the identification phase. The proposed identification system was evaluated on 10, 20, …, 200 reference subjects of the Physikalisch-Technische Bundesanstalt (PTB) ECG database. Using a single limb-based lead (I) with 200 reference subjects, the system achieved an identification rate of 95.15% and equal error rate of 0.1. The use of a single chest-based lead (V3) for 200 reference subjects resulted in an identification rate of 98.92% and equal error rate of 0.08.

Author(s):  
Aldjia Boucetta ◽  
Leila Boussaad

Finger-vein identification, a biometric technology that uses vein patterns in the human finger to identify people. In recent years, it has received increasing attention due to its tremendous advantages compared to fingerprint characteristics. Moreover, Deep-Convolutional Neural Networks (Deep-CNN) appeared to be highly successful for feature extraction in the finger-vein area, and most of the proposed works focus on new Convolutional Neural Network (CNN) models, which require huge databases for training, a solution that may be more practicable in real world applications, is to reuse pretrained Deep-CNN models. In this paper, a finger-vein identification system is proposed, which uses Squeezenet pretrained Deep-CNN model as feature extractor from the left and the right finger vein patterns. Then, combines this Deep-based features by using a feature-level Discriminant Correlation Analysis (DCA) to reduce feature dimensions and to give the most relevant features. Finally, these composite feature vectors are used as input data for a Support Vector Machine (SVM) classifier, in an identification stage. This method is tested on two widely available finger vein databases, namely SDUMLA-HMT and FV-USM. Experimental results show that the proposed finger vein identification system achieves significant high mean accuracy rates.


2015 ◽  
Vol 713-715 ◽  
pp. 1513-1519 ◽  
Author(s):  
Wei Dong Du ◽  
Bao Wei Chen ◽  
Hai Sen Li ◽  
Chao Xu

In order to solve fish classification problems based on acoustic scattering data, temporal centroid (TC) features and discrete cosine transform (DCT) coefficients features used to analyze acoustic scattering characteristics of fish from different aspects are extracted. The extracted features of fish are reduced in dimension and fused, and support vector machine (SVM) classifier is used to classify and identify the fishes. Three kinds of different fishes are selected as research objects in this paper, the correct identification rates are given based on temporal centroid features and discrete cosine transform coefficients features and fused features. The processing results of actual experimental data show that multi-feature fusion method can improve the identification rate at about 5% effectively.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7309
Author(s):  
Junhyuk Choi ◽  
Keun Tae Kim ◽  
Ji Hyeok Jeong ◽  
Laehyun Kim ◽  
Song Joo Lee ◽  
...  

This study aimed to develop an intuitive gait-related motor imagery (MI)-based hybrid brain-computer interface (BCI) controller for a lower-limb exoskeleton and investigate the feasibility of the controller under a practical scenario including stand-up, gait-forward, and sit-down. A filter bank common spatial pattern (FBCSP) and mutual information-based best individual feature (MIBIF) selection were used in the study to decode MI electroencephalogram (EEG) signals and extract a feature matrix as an input to the support vector machine (SVM) classifier. A successive eye-blink switch was sequentially combined with the EEG decoder in operating the lower-limb exoskeleton. Ten subjects demonstrated more than 80% accuracy in both offline (training) and online. All subjects successfully completed a gait task by wearing the lower-limb exoskeleton through the developed real-time BCI controller. The BCI controller achieved a time ratio of 1.45 compared with a manual smartwatch controller. The developed system can potentially be benefit people with neurological disorders who may have difficulties operating manual control.


2020 ◽  
Vol 91 (3) ◽  
pp. 034106 ◽  
Author(s):  
Fei Wang ◽  
Zongfeng Xu ◽  
Weiwei Zhang ◽  
Shichao Wu ◽  
Yahui Zhang ◽  
...  

Author(s):  
Yanjun Sun ◽  
Xuanjing Shen ◽  
Yingda Lv ◽  
Changming Liu

With the rapid development of digital cameras and smart phones, the image identification system in current times will be of a great impact. This will cause the form of image information to increase serious security issues. Especially, the emergence of the recaptured image makes conventional digital image forensics algorithm invalid. Therefore, a new image forensics algorithm is urgently needed to identify the recaptured image. In this paper, a new recaptured image identifying algorithm is put forward based on wavelet transformation and noise analysis by analyzing the differences between the real and recaptured images generated in the imaging process. First, the proposed algorithm extracts mean value, variance and skewness as wavelet characteristic from the high-frequency images and low-frequency images by wavelet transformation. Meanwhile, the proposed algorithm analyzes the noise image by means of local binary pattern to extract noise characteristic. Finally, the support vector machine is applied to classify the recaptured image with wavelet characteristics and noise characteristics. The results show the presented method can not only identify the recaptured image obtained from different media but also have better identification rate, and the dimension of the characteristic vector is also lower than those obtained by other algorithms.


2007 ◽  
Vol 2007 ◽  
pp. 1-9 ◽  
Author(s):  
Jianzhao Qin ◽  
Yuanqing Li ◽  
Wei Sun

As an emerging technology, brain-computer interfaces (BCIs) bring us new communication interfaces which translate brain activities into control signals for devices like computers, robots, and so forth. In this study, we propose a semisupervised support vector machine (SVM) algorithm for brain-computer interface (BCI) systems, aiming at reducing the time-consuming training process. In this algorithm, we apply a semisupervised SVM for translating the features extracted from the electrical recordings of brain into control signals. This SVM classifier is built from a small labeled data set and a large unlabeled data set. Meanwhile, to reduce the time for training semisupervised SVM, we propose a batch-mode incremental learning method, which can also be easily applied to the online BCI systems. Additionally, it is suggested in many studies that common spatial pattern (CSP) is very effective in discriminating two different brain states. However, CSP needs a sufficient labeled data set. In order to overcome the drawback of CSP, we suggest a two-stage feature extraction method for the semisupervised learning algorithm. We apply our algorithm to two BCI experimental data sets. The offline data analysis results demonstrate the effectiveness of our algorithm.


2017 ◽  
Vol 10 (1) ◽  
pp. 19 ◽  
Author(s):  
C H Arun ◽  
D Christopher Durairaj

This paper presents an automated medicinal plant leaf identification system. The Colour Texture analysis of the leaves is done using the statistical, the Grey Tone Spatial Dependency Matrix(GTSDM) and the Local Binary Pattern(LBP) based features with 20 different  colour spaces(RGB, XYZ, CMY, YIQ, YUV, $YC_{b}C_{r}$, YES, $U^{*}V^{*}W^{*}$, $L^{*}a^{*}b^{*}$, $L^{*}u^{*}v^{*}$, lms, $l\alpha\beta$, $I_{1} I_{2} I_{3}$, HSV, HSI, IHLS, IHS, TSL, LSLM and KLT).  Classification of the medicinal plant is carried out with 70\% of the dataset in training set and 30\% in the test set. The classification performance is analysed with Stochastic Gradient Descent(SGD), kNearest Neighbour(kNN), Support Vector Machines based on Radial basis function kernel(SVM-RBF), Linear Discriminant Analysis(LDA) and Quadratic Discriminant Analysis(QDA) classifiers. Results of classification on a dataset of 250 leaf images belonging to five different species of plants show the identification rate of 98.7 \%. The results certainly show better identification due to the use of YUV, $L^{*}a^{*}b^{*}$ and HSV colour spaces.


Sign in / Sign up

Export Citation Format

Share Document