signal segment
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 11)

H-INDEX

4
(FIVE YEARS 2)

2022 ◽  
Vol 18 (1) ◽  
pp. 1-21
Author(s):  
Hang Wu ◽  
Jiajie Tan ◽  
S.-H. Gary Chan

The geomagnetic field has been wildly advocated as an effective signal for fingerprint-based indoor localization due to its omnipresence and local distinctive features. Prior survey-based approaches to collect magnetic fingerprints often required surveyors to walk at constant speeds or rely on a meticulously calibrated pedometer (step counter) or manual training. This is inconvenient, error-prone, and not highly deployable in practice. To overcome that, we propose Maficon, a novel and efficient pedometer-free approach for geo ma gnetic fi ngerprint database con struction. In Maficon, a surveyor simply walks at casual (arbitrary) speed along the survey path to collect geomagnetic signals. By correlating the features of geomagnetic signals and accelerometer readings (user motions), Maficon adopts a self-learning approach and formulates a quadratic programming to accurately estimate the walking speed in each signal segment and label these segments with their physical locations. To the best of our knowledge, Maficon is the first piece of work on pedometer-free magnetic fingerprinting with casual walking speed. Extensive experiments show that Maficon significantly reduces walking speed estimation error (by more than 20%) and hence fingerprint error (by 35% in general) as compared with traditional and state-of-the-art schemes.


2021 ◽  
Author(s):  
Yanan Pu ◽  
Xiaoxue Xie ◽  
Ling Xiong ◽  
Heng Zhang

In recent years, studies have found that the hierarchical neural network with LSTM network has higher accuracy than another feature engineering. Therefore, this paper first tries to build a multi-stage blood pressure estimation model through VGG19 and LSTM network. Based on the time node of the R wave peak in the QRS waveform in ECG, VGG19 is used to extract various higher-dimensional and rich life characteristics in the PPG signal segment by heartbeat as the unit and focus on processing the dynamics of SBP and DBP Correlation, finally use the LSTM model to extract the time dependence of the vital signs. Results: Experiments show that compared with similar multi-stage models, this model has higher accuracy. The performance of this method meets the Advancement of Medical Instrumentation (AAMI) standard and reaches the A level of the British Hypertension Society (BHS) standard. The average error and standard deviation of the estimated value of SBP were 1.7350 4.9606 mmHg, and the average error and standard deviation of the estimated value of DBP were 0.7839 2.7700 mmHg, respectively.


Author(s):  
Jun LU ◽  
Qunfei ZHANG ◽  
Wentao SHI ◽  
Lingling ZHANG

The integration of underwater detection and communication uses communication signals to detect a target actively, but the Doppler effect deteriorates the parameter estimation performance of the integrated system. To eliminate the influence of the Doppler effect, a joint Doppler estimation and compensation method based on spectrum zooming and correction is proposed. Firstly, the synchronization signal is used to obtain the signal receiving delay and intercept the single-frequency signal segment in the received signal. Then, the discrete Fourier transform is used to find the frequency that corresponds to the maximum amplitude of the single-frequency signal segment. Finally, the frequency spectrum is refined and corrected within the range near the frequency. The Doppler factor is estimated and the received signal is compensated by the Doppler estimation value. The simulation results show that the proposed method improves Doppler factor estimation accuracy, increases the cross-correlation processing gain and improves DOA (direction of arrival) estimation performance, thus being robust to different Doppler effects.


2020 ◽  
Vol 6 (3) ◽  
pp. 514-517
Author(s):  
Patricio Fuentealba ◽  
Alfredo Illanes ◽  
Frank Ortmeier ◽  
Prabal Poudel

AbstractThis work focuses on investigating an optimal foetal heart rate (FHR) signal segment to be considered for automatic cardiotocographic (CTG) classification. The main idea is to evaluate a set of signal segments of different length and location based on their classification performance. For this purpose, we employ a feature extraction operation based on two signal processing techniques, such as the Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and time-varying autoregressive modelling. For each studied segment, the features are extracted and evaluated based on their performance in CTG classification. For the proposed evaluation, we make use of real CTG data extracted from the CTU-UHB database. Results show that the classification performance depends considerably on the selected FHR segment. Likewise, we have found that an optimal FHR segment for foetal welfare assessment during labour corresponds to a segment of 30 minutes long.


2020 ◽  
Vol 110 (3) ◽  
pp. 970-997 ◽  
Author(s):  
Joel D. Simon ◽  
Frederik J. Simons ◽  
Guust Nolet

ABSTRACT We describe an algorithm to pick event onsets in noisy records, characterize their error distributions, and derive confidence intervals on their timing. Our method is based on an Akaike information criterion that identifies the partition of a time series into a noise and a signal segment that maximizes the signal-to-noise ratio. The distinctive feature of our approach lies in the timing uncertainty analysis, and in its application in the time domain and in the wavelet timescale domain. Our novel data are records collected by freely floating Mobile Earthquake Recording in Marine Areas by Independent Divers (MERMAID) instruments, midcolumn hydrophones that report triggered segments of ocean-acoustic time series.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Tao Wang ◽  
Changhua Lu ◽  
Guohao Shen

Sleep apnea (SA) is a ubiquitous sleep-related respiratory disease. It can occur hundreds of times at night, and its long-term occurrences can lead to some serious cardiovascular and neurological diseases. Polysomnography (PSG) is a commonly used diagnostic device for SA. But it requires suspected patients to sleep in the lab for one to two nights and records about 16 signals through expert monitoring. The complex processes hinder the widespread implementation of PSG in public health applications. Recently, some researchers have proposed using a single-lead ECG signal for SA detection. These methods are based on the hypothesis that the SA relies only on the current ECG signal segment. However, SA has time dependence; that is, the SA of the ECG segment at the previous moment has an impact on the current SA diagnosis. In this study, we develop a time window artificial neural network that can take advantage of the time dependence between ECG signal segments and does not require any prior assumptions about the distribution of training data. By verifying on a real ECG signal dataset, the performance of our method has been significantly improved compared to traditional non-time window machine learning methods as well as previous works.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Turky N. Alotaiby ◽  
Saud Rashid Alrshoud ◽  
Saleh A. Alshebeili ◽  
Latifah M. Aljafar

In this work, a nonfiducial electrocardiogram (ECG) identification algorithm based on statistical features and random forest classifier is presented. Two feature extraction approaches are investigated: direct and band-based approaches. In the former, eleven simple statistical features are directly extracted from a single-lead ECG signal segment. In the latter, the single-lead ECG signal is first decomposed into bands, and the statistical features are extracted from each segment of a given band and concatenated to form the feature vector. Nonoverlapping segments of different lengths (i.e., 1, 3, 5, 7, 10, or 15 sec) are examined. The extracted feature vectors are applied to a random forest classifier, for the purpose of identification. This study considers 290 reference subjects from the ECG database of the Physikalisch-Technische Bundesanstalt (PTB). The proposed identification algorithm achieved an accuracy rate of 99.61% utilizing the single limb lead (I) with the band-based approach. A single chest lead (V1), augmented limb lead (aVF), and Frank’s lead (Vx) achieved an accuracy rate of 99.37%, 99.76%, and 99.76%, respectively, using the same approach.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3465 ◽  
Author(s):  
Kai Zhou ◽  
Mingzhi Li ◽  
Yuan Li ◽  
Min Xie ◽  
Yonglu Huang

To extract partial discharge (PD) signals from white noise efficiently, this paper proposes a denoising method for PD signals, named adaptive short-time singular value decomposition (ASTSVD). First, a sliding window was moved along the time axis of a PD signal to cut a whole signal into segments with overlaps. The singular value decomposition (SVD) method was then applied to each segment to obtain its singular value sequence. The minimum description length (MDL) criterion was used to determine the number of effective singular values automatically. Then, the selected singular values of each signal segment were used to reconstruct the noise-free signal segment, from which the denoised PD signal was obtained. To evaluate ASTSVD, we applied ASTSVD and two other methods on simulated, laboratory-measured, and field-detected noisy PD signals, respectively. Compared to the other two methods, the denoised PD signals of ASTSVD contain less residual noise and exhibit smaller waveform distortion.


Symmetry ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 871 ◽  
Author(s):  
Aleš Procházka ◽  
Oldřich Vyšata ◽  
Hana Charvátová ◽  
Martin Vališ

Analysis of motion symmetry constitutes an important area with many applications in engineering, robotics, neurology and biomedicine. This paper presents the use of microelectromechanical sensors (MEMS), including accelerometers and gyrometers, to acquire data via mobile devices so as to monitor physical activities and their irregularities. Special attention is devoted to the analysis of the symmetry of the motion of the body when the same exercises are performed by the right and the left limb. The analyzed data include the motion of the legs on a home exercise bike under different levels of load. The method is based on signal analysis using the discrete wavelet transform and the evaluation of signal segment features such as the relative energy at selected decomposition levels. The subsequent classification of the evaluated features is performed by k-nearest neighbours, a Bayesian approach, a support vector machine, and neural networks. The highest average classification accuracy attained is 91.0% and the lowest mean cross-validation error is 0.091, resulting from the use of a neural network. This paper presents the advantages of the use of simple sensors, their combination and intelligent data processing for the numerical evaluation of motion features in the rehabilitation and monitoring of physical activities.


Sign in / Sign up

Export Citation Format

Share Document