scholarly journals A Comparative Life Cycle Assessment (LCA) of Warm Mix Asphalt (WMA) and Hot Mix Asphalt (HMA) Pavement: A Case Study in China

2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Hui Ma ◽  
Zhigang Zhang ◽  
Xia Zhao ◽  
Shuang Wu

Generally, the warm mix asphalt (WMA) technology can reduce the mixing and paving temperature effectively as compared with that of hot mix asphalt (HMA), which is considered more environment-friendly. In this study, the environmental impacts and resource consumptions of WMA and HMA pavements were analyzed comparatively using the life cycle assessment (LCA) method. A LCA model of pavement was built; meanwhile, the relevant life cycle inventory (LCI) of WMA and HMA pavements was also collected and analyzed. The midpoint impact categories including Global Warming Potential (GWP), Chinese Abiotic Depletion Potential (CADP), and Particulate Matter Formation (PMF) were assessed for five cases. The assessment results showed that the resource consumptions of both WMA and HMA pavements in entire life were almost at the same level, while the environmental impacts of WMA pavement related to greenhouse gases and PM2.5 emissions were significantly less than that of HMA pavement, except for the case where the long-term performance of WMA pavement is much worse than that of HMA pavement. In final, it could be concluded that WMA pavement is more environment-friendly compared with HMA pavement although they have the same-level resource consumptions.

2013 ◽  
Vol 20 (1) ◽  
pp. 256-266 ◽  
Author(s):  
Ziari Hasan ◽  
Behbahani Hamid ◽  
Izadi Amir ◽  
Nasr Danial

2020 ◽  
Vol 146 ◽  
pp. 1177-1191 ◽  
Author(s):  
Melis Sutman ◽  
Gianluca Speranza ◽  
Alessio Ferrari ◽  
Pyrène Larrey-Lassalle ◽  
Lyesse Laloui

2019 ◽  
Vol 11 (15) ◽  
pp. 4067 ◽  
Author(s):  
Baustert ◽  
Gutiérrez ◽  
Gibon ◽  
Chion ◽  
Ma ◽  
...  

According to the Intergovernmental Panel on Climate Change (IPCC), in 2010 the transport sector was responsible for 23% of the total energy-related CO2 emissions (6.7 GtCO2) worldwide. Policy makers in Luxembourg are well-aware of the challenges and are setting ambitious objectives at country level for the mid and long term. However, a framework to assess environmental impacts from a life cycle perspective on the scale of transport policy scenarios, rather than individual vehicles, is lacking. We present a novel framework linking activity-based modeling with life cycle assessment (LCA) and a proof-of-concept case study for the French cross-border commuters working in Luxembourg. Our framework allows for the evaluation of specific policies formulated on the trip level as well as aggregated evaluation of environmental impacts from a life cycle perspective. The results of our proof-of-concept-based case study suggest that only a combination of: (1) policy measures improving the speed and coverage of the public transport system; (2) policy measures fostering electric mobility; and (3) external factors such as de-carbonizing the electricity mix will allow to counteract the expected increase in impacts due to the increase of mobility needs of the growing commuting population in the long term.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2472
Author(s):  
Karel Struhala ◽  
Milan Ostrý

Contemporary research stresses the need to reduce mankind’s environmental impacts and achieve sustainability. One of the keys to this is the construction sector. New buildings have to comply with strict limits regarding resource consumption (energy, water use, etc.). However, they make up only a fraction of the existing building stock. Renovations of existing buildings are therefore essential for the reduction of the environmental impacts in the construction sector. This paper illustrates the situation using a case study of a rural terraced house in a village near Brno, Czech Republic. It compares the life-cycle assessment (LCA) of the original house and its proposed renovation as well as demolition followed by new construction. The LCA covers both the initial embodied environmental impacts (EEIs) and the 60-year operation of the house with several variants of energy sources. The results show that the proposed renovation would reduce overall environmental impacts (OEIs) of the house by up to 90% and the demolition and new construction by up to 93% depending on the selected energy sources. As such, the results confirm the importance of renovations and the installation of environmentally-friendly energy sources for achieving sustainability in the construction sector. They also show the desirability of the replacement of inefficient old buildings by new construction in specific cases.


2021 ◽  
Vol 13 (17) ◽  
pp. 9625
Author(s):  
Ambroise Lachat ◽  
Konstantinos Mantalovas ◽  
Tiffany Desbois ◽  
Oumaya Yazoghli-Marzouk ◽  
Anne-Sophie Colas ◽  
...  

The demolition of buildings, apart from being energy intensive and disruptive, inevitably produces construction and demolition waste (C&Dw). Unfortunately, even today, the majority of this waste ends up underexploited and not considered as valuable resources to be re-circulated into a closed/open loop process under the umbrella of circular economy (CE). Considering the amount of virgin aggregates needed in civil engineering applications, C&Dw can act as sustainable catalyst towards the preservation of natural resources and the shift towards a CE. This study completes current research by presenting a life cycle inventory compilation and life cycle assessment case study of two buildings in France. The quantification of the end-of-life environmental impacts of the two buildings and subsequently the environmental impacts of recycled aggregates production from C&Dw was realized using the framework of life cycle assessment (LCA). The results indicate that the transport of waste, its treatment, and especially asbestos’ treatment are the most impactful phases. For example, in the case study of the first building, transport and treatment of waste reached 35% of the total impact for global warming. Careful, proactive, and strategic treatment, geolocation, and transport planning is recommended for the involved stakeholders and decision makers in order to ensure minimal sustainability implications during the implementation of CE approaches for C&Dw.


2017 ◽  
Vol 140 ◽  
pp. 1204-1216 ◽  
Author(s):  
Elena Maria Iannicelli-Zubiani ◽  
Martina Irene Giani ◽  
Francesca Recanati ◽  
Giovanni Dotelli ◽  
Stefano Puricelli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document