scholarly journals A Vehicle Route Planning Method of Two-Phase Large-Scale Crowd Evacuation in Typhoon Relief Activities

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Sha-lei Zhan ◽  
Liang Chen ◽  
Ping-Kuo Chen ◽  
Yong Ye

Large-scale crowd evacuation is an important measure guaranteeing the safety of disaster-stricken victims in typhoon relief activities. Decision-making related to antityphoon crowd evacuation must take full consideration of the destructive effect of typhoons and their secondary disasters, time urgency, and resource limitation. To give full play to limited vehicle resources, the influence of a typhoon and its secondary disasters on antityphoon evacuation are mainly manifested during the execution of evacuation tasks in this article. The shortest time spent in completing all evacuation tasks was taken as the objective. Then, a vehicle route selection model for two-phase large-scale antityphoon crowd evacuation was built under an uncertain environment, and a matrix encoding–based genetic algorithm was designed to solve the model. Under the background of Super Typhoon Meranti in 2016, the model and algorithm were applied to crowd evacuation in a typhoon in Xiamen for a simulated analysis. Results indicate that in typhoon relief activities, emergency decision makers can use the proposed method to acquire a scientific and reasonable route selection scheme for antityphoon crowd evacuation according to related typhoon disaster data.

Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 534 ◽  
Author(s):  
Meng-Tse Lee ◽  
Bo-Yu Chen ◽  
Ying-Chih Lai

The application of an unmanned vehicle system allows for accelerating the performance of various tasks. Due to limited capacities, such as battery power, it is almost impossible for a single unmanned vehicle to complete a large-scale mission area. An unmanned vehicle swarm has the potential to distribute tasks and coordinate the operations of many robots/drones with very little operator intervention. Therefore, multiple unmanned vehicles are required to execute a set of well-planned mission routes, in order to minimize time and energy consumption. A two-phase heuristic algorithm was used to pursue this goal. In the first phase, a tabu search and the 2-opt node exchange method were used to generate a single optimal path for all target nodes; the solution was then split into multiple clusters according to vehicle numbers as an initial solution for each. In the second phase, a tabu algorithm combined with a 2-opt path exchange was used to further improve the in-route and cross-route solutions for each route. This diversification strategy allowed for approaching the global optimal solution, rather than a regional one with less CPU time. After these algorithms were coded, a group of three robot cars was used to validate this hybrid path programming algorithm.


2020 ◽  
Vol 9 (7) ◽  
pp. 442
Author(s):  
Takanori Hara ◽  
Masahiro Sasabe ◽  
Taiki Matsuda ◽  
Shoji Kasahara

When a large-scale disaster occurs, each evacuee should move to an appropriate refuge in a speedy and safe manner. Most of the existing studies on the refuge assignment consider the speediness of evacuation and refuge capacity while the safety of evacuation is not taken into account. In this paper, we propose a refuge assignment scheme that considers both the speediness and safety of evacuation under the refuge capacity constraint. We first formulate the refuge assignment problem as a two-step integer linear program (ILP). Since the two-step ILP requires route candidates between evacuees and their possible refuges, we further propose a speedy and reliable route selection scheme as an extension of the existing route selection scheme. Through numerical results using the actual data of Arako district of Nagoya city in Japan, we show that the proposed scheme can improve the average route reliability among evacuees by 13.6% while suppressing the increase of the average route length among evacuees by 7.3%, compared with the distance-based route selection and refuge assignment. In addition, we also reveal that the current refuge capacity is not enough to support speedy and reliable evacuation for the residents.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3808 ◽  
Author(s):  
Blazej Podlesny ◽  
Bogumila Kumanek ◽  
Angana Borah ◽  
Ryohei Yamaguchi ◽  
Tomohiro Shiraki ◽  
...  

Single-walled carbon nanotubes (SWCNTs) remain one of the most promising materials of our times. One of the goals is to implement semiconducting and metallic SWCNTs in photonics and microelectronics, respectively. In this work, we demonstrated how such materials could be obtained from the parent material by using the aqueous two-phase extraction method (ATPE) at a large scale. We also developed a dedicated process on how to harvest the SWCNTs from the polymer matrices used to form the biphasic system. The technique is beneficial as it isolates SWCNTs with high purity while simultaneously maintaining their surface intact. To validate the utility of the metallic and semiconducting SWCNTs obtained this way, we transformed them into thin free-standing films and characterized their thermoelectric properties.


2020 ◽  
Author(s):  
Kailang Chen ◽  
Hanyu Zhang ◽  
Xin Huang ◽  
Long Chen ◽  
Qi Shi

Author(s):  
Stefan Puttinger ◽  
Mahdi Saeedipour

AbstractThis paper presents an experimental investigation on the interactions of a deflected submerged jet into a liquid pool with its above interface in the absence and presence of an additional lighter liquid. Whereas the former is a free surface flow, the latter mimics a situation of two stratified liquids where the liquid-liquid interface is disturbed by large-scale motions in the liquid pool. Such configurations are encountered in various industrial applications and, in most cases, it is of major interest to avoid the entrainment of droplets from the lighter liquid into the main flow. Therefore, it is important to understand the fluid dynamics in such configurations and to analyze the differences between the cases with and without the additional liquid layer. To study this problem, we applied time-resolved particle image velocimetry experiments with high spatial resolution. A detailed data analysis of a small layer beneath the interface shows that although the presence of an additional liquid layer stabilizes the oscillations of the submerged jet significantly, the amount of kinetic energy, enstrophy, and velocity fluctuations concentrated in the proximity of the interface is higher when the oil layer is present. In addition, we analyze the energy distribution across the eigenmodes of a proper orthogonal distribution and the distribution of strain and vortex dominated regions. As the main objective of this study, these high-resolution time-resolved experimental data provide a validation platform for the development of new models in the context of the volume of fluid-based large eddy simulation of turbulent two-phase flows.


2020 ◽  
Vol 548 ◽  
pp. 116504
Author(s):  
A. Soldati ◽  
J.A. Farrell ◽  
C. Sant ◽  
R. Wysocki ◽  
J.A. Karson

Author(s):  
Lissett Barrios ◽  
Stuart Scott ◽  
Charles Deuel

The paper reports on developmental research on the effects of viscosity and two phases, liquid–gas fluids on ESPs which are multi stage centrifugal pumps for deep bore holes. Multiphase viscous performance in a full-scale Electrical Submersible Pump (ESP) system at Shell’s Gasmer facility has been studied experimentally and theoretically. The main objectives is to predict the operational conditions that cause degradations for high viscosity fluids when operating in high Gas Liquid Radio (GLR) wells to support operation in Shell major Projects. The system studied was a 1025 series tandem WJE 1000. The test was performed using this configuration with ten or more pump stages moving fluids with viscosity from 2 to 200 cP at various speed, intake pressure and Gas Void Fractions (GVF). For safety considerations the injected gas was restricted to nitrogen or air. The ESP system is a central artificial lift method commonly used for medium to high flow rate wells. Multiphase flow and viscous fluids causes problems in pump applications. Viscous fluids and free gas inside an ESP can cause head degradation and gas locking. Substantial attempts have been made to model centrifugal pump performance under gas-liquid viscous applications, however due to the complexity this is still a uncertain problem. The determination of the two-phase flow performance in these harmful conditions in the ESP is fundamental aspects in the surveillance operation. The testing at Shell’s Gasmer facility revealed that the ESP system performed as theoretical over the range of single flowrates and light viscosity oils up to Gas Volume Fractions (GVF) around 25%. The developed correlations predict GVF at the pump intake based on the operational parameters. ESP performance degrades at viscosity higher than 100cp as compared to light oil applications, gas lock condition is observed at gas fraction higher than 45%. Pump flowrate can be obtained from electrical current and boost for all range of GVF and speed. The main technical contributions are the analysis of pump head degradation under two important variables, high viscosity and two-phase flow inside the ESP.


Sign in / Sign up

Export Citation Format

Share Document