scholarly journals Effects of Polysaccharide from Malus halliana Koehne Flowers in Cyclophosphamide-Induced Immunosuppression and Oxidative Stress on Mice

2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Yingying Niu ◽  
Jing Dong ◽  
Huimin Jiang ◽  
Jinmei Wang ◽  
Zhenhua Liu ◽  
...  

The immunomodulatory effects of Malus halliana flower polysaccharide (MHFP) were investigated in this paper. The model of immunosuppressive mice was established by cyclophosphamide, which was treated with different dosages of MHFP (600, 400, and 200 mg/kg·d-1). The results showed that MHFP significantly increased the index of the spleen and thymus and improved the atrophy of immune organs. MHFP enhanced the ability of carbon clearance and phagocytosis of mononuclear phagocytes in mice. Meanwhile, MHFP promoted the proliferation of splenic lymphocytes. MHFP could enhance the content of serum hemolysin and improve the decrease of hemolysin induced by cyclophosphamide. The contents of ACP and LDH in the serum and spleen were determined, indicating that MHFP could enhance the activity of macrophages. MHFP promoted the content of cytokines (IL-2, IL-6, TNF-α, and IFN-γ) and mRNA expression. At the same time, the pathological changes of the spleen tissue also showed that MHFP could improve the immunosuppression induced by cyclophosphamide. In addition, MHFP increased the content of SOD, T-AOC, and CAT in the serum and spleen tissue, decreased the level of MDA, and improved the oxidative stress caused by cyclophosphamide. In conclusion, MHFP could effectively improve the immunosuppression and oxidative stress induced by cyclophosphamide and enhance the immune capacity of mice.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Natasha de Alwis ◽  
Sally Beard ◽  
Natalie K. Binder ◽  
Natasha Pritchard ◽  
Tu’uhevaha J. Kaitu’u-Lino ◽  
...  

AbstractPreviously, we identified increased maternal circulating DAAM2 mRNA in pregnancies complicated by preterm fetal growth restriction (FGR). Here, we assessed whether circulating DAAM2 mRNA could detect FGR, and whether the DAAM2 gene, known to play roles in the Wnt signalling pathway is expressed in human placenta and associated with dysfunction and FGR. We performed linear regression analysis to calculate area under the ROC curve (AUC) for DAAM2 mRNA expression in the maternal circulation of pregnancies complicated by preterm FGR. DAAM2 mRNA expression was assessed across gestation by qPCR. DAAM2 protein and mRNA expression was assessed in preterm FGR placenta using western blot and qPCR. DAAM2 expression was assessed in term cytotrophoblasts and placental explant tissue cultured under hypoxic and normoxic conditions by qPCR. Small interfering RNAs were used to silence DAAM2 in term primary cytotrophoblasts. Expression of growth, apoptosis and oxidative stress genes were assessed by qPCR. Circulating DAAM2 mRNA was elevated in pregnancies complicated by preterm FGR [p < 0.0001, AUC = 0.83 (0.78–0.89)]. Placental DAAM2 mRNA was detectable across gestation, with highest expression at term. DAAM2 protein was increased in preterm FGR placentas but demonstrated no change in mRNA expression. DAAM2 mRNA expression was increased in cytotrophoblasts and placental explants under hypoxia. Silencing DAAM2 under hypoxia decreased expression of pro-survival gene, BCL2 and oxidative stress marker, NOX4, whilst increasing expression of antioxidant enzyme, HMOX-1. The increased DAAM2 associated with FGR and hypoxia implicates a potential role in placental dysfunction. Decreasing DAAM2 may have cytoprotective effects, but further research is required to elucidate its role in healthy and dysfunctional placentas.


2021 ◽  
Author(s):  
ZHIPENG CHEN ◽  
HEQIAN LIU ◽  
SUBINUR MAMATELI ◽  
CHENG LIU ◽  
YUTONG LIU ◽  
...  

Abstract Background Atherosclerosis (AS) is the primary cause of cardiovascular disease and the incidence is extremely common; however, there are currently few drugs that can effectively treat AS. Although oridonin has been widely used to treat inflammation and cancer for numerous years, to the best of our knowledge, its protective effect against AS has not been reported. Therefore, the present study aimed to investigate whether oridonin attenuated AS. Methods By using text mining, chemometric and chemogenomic methods, oridonin was predicted to be a beneficial agent for the treatment of AS. A parallel flow chamber was used to establish a low shear stress (LSS)-induced endothelial cell (EC) dysfunction model. Briefly, ECs were exposed to 3 dyn/cm2 LSS for 30 min and subsequently treated with oridonin or transfected with a small interfering RNA (siRNA) targeting nuclear factor erythroid 2-related factor 2 (NRF2). Reactive oxygen species (ROS), superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH) and glutathione disulfide (GSSG) in EA.hy926 cells were analyzed to determine the level of oxidative stress. The nitric oxide (NO) levels and mRNA expression levels of endothelial NO synthase (eNOS), endothelin-1 (ET-1) and prostaglandin synthase (PGIS) in EA.hy926 cells were analyzed to determine EC dysfunction. Furthermore, the mRNA expression levels of NRF2 were analyzed using reverse transcription-quantitative PCR. In addition, zebrafish were fed with a high-cholesterol diet to establish a zebrafish AS model, which was used to observe lipid accumulation and inflammation under a fluorescence microscope. Results We found LSS led to oxidative stress and EC dysfunction; this was primarily indicated through the significantly decreased SOD and GSH content, the significantly increased MDA, GSSG and ROS content, the upregulated mRNA expression levels of ET-1, and the downregulated NO levels and mRNA expression levels of eNOS and PGIS in ECs. Notably, oridonin could improve LSS-induced oxidative stress and EC dysfunction,and the effects of oridonin were reversed by the transfection with NRF2 siRNA. Oridonin also attenuated lipid accumulation and neutrophil recruitment at the LSS regions in the zebrafish AS model. Conclusions In conclusion, the results of the present study suggested that oridonin may ameliorate LSS-induced EC dysfunction and oxidative stress by activating NRF2, thereby attenuating AS.


2011 ◽  
Vol 21 (6) ◽  
pp. 1677-1682 ◽  
Author(s):  
Mohammed A. Ibrahim ◽  
Murtala B. Isah ◽  
Azubuike I. Okafor ◽  
Musa Bashir ◽  
Mohammed Bisalla ◽  
...  

2019 ◽  
Vol 10 (12) ◽  
pp. 7900-7912 ◽  
Author(s):  
Arshad Mehmood ◽  
Lei Zhao ◽  
Chengtao Wang ◽  
Imam Hossen ◽  
Rifat Nowshin Raka ◽  
...  

The supplementation of STVRE significantly attenuated hyperuricemia and oxidative stress, upregulated ABCG2 and downregulated GLUT9 (protein and mRNA) expression in hyperuricemic mice.


2019 ◽  
Vol 36 (1) ◽  
Author(s):  
Etiane Tatsch ◽  
José A.M. De Carvalho ◽  
Yãnaí S. Bollick ◽  
Thiago Duarte ◽  
Marta M.M.F. Duarte ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Hamda Khan ◽  
Mohd Waseem ◽  
Mohammad Faisal ◽  
Abdulrahman A. Alatar ◽  
Ahmed A. Qahtan ◽  
...  

In recent years, there has been a progress in the study of glycation reaction which is one the possible reason for multiple metabolic disorders. Glycation is a nonenzymatic reaction between nucleic acids, lipids, and proteins resulting into the formation of early glycation products that may further lead to the accumulation of advanced glycation end products (AGEs). The precipitation of AGEs in various cells, tissues, and organs is one of the factors for the initiation and progression of various metabolic derangements including the cancer. The AGE interaction with its receptor “RAGE” activates the inflammatory pathway; yet, the downregulation of RAGE and its role in these pathways are not clear. We explore the effect of anticancer novel nanoassemblies on AGEs to determine its role in the regulation of the expression of RAGE, NFƙB, TNF-α, and IFN-γ. This paper is based on the in vivo and in vitro study in glycation and lung cancer model systems. Upon the treatment of nanoassemblies in both the model systems, we observed a protective effect of nanoassemblies over the inhibition of glycative and oxidative stress via mRNA expression analysis. The mRNA expression results corroborated with the reactive oxygen species (ROS), carboxy-methyl-lysine (CML), and fluorescence studies. In this study, we found that the presence of common factors for glycation and lung cancer is oxidative and glycative stress. This oxidation and glycation might be responsible for the initiation of inflammation which may further lead to uncontrolled growth of cells leading to cancer. This can be a strong association between lung cancer and glycation reaction. The intervention of the anticancer and antiglycation effects of multimodal nanoassemblies throughout the study promises a new pathway for cancer research.


Oncotarget ◽  
2016 ◽  
Vol 7 (51) ◽  
pp. 83869-83879 ◽  
Author(s):  
Kaiyu Wang ◽  
Erlong Wang ◽  
Zhenyang Qin ◽  
Zhen Zhou ◽  
Yi Geng ◽  
...  

2014 ◽  
Vol 13 (2) ◽  
pp. 76-80 ◽  
Author(s):  
Ioana R. Preston

Research in pulmonary hypertension (PH) in general and in pulmonary arterial hypertension (PAH) in particular has been extremely active in the past few years. The current therapeutic landscape includes multiple compounds shown to be active in modulating and ameliorating the pathological changes in the endothelin, nitric oxide (NO), and prostacyclin pathways. In addition, development of new compounds targeting pathways of pulmonary vascular remodeling due to inflammation, fibrosis, and oxidative stress is underway. This review summarizes the most recent achievements and newly conducted clinical trials—some with novel trial design—for treatment of PH and PAH.


Nutrients ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1412 ◽  
Author(s):  
Md Sodrul Islam ◽  
Lingyan Miao ◽  
Hui Yu ◽  
Ziyi Han ◽  
Hongxiang Sun

The root bark of Illicium henryi has been used in traditional Chinese medicine to treat various diseases. Its ethanol extract (EEIH) was found to contain a large number of phenols and possess in vitro antioxidant activities. The present study aimed to investigate its protective effect against lipopolysaccharide (LPS)-induced acute kidney injury (AKI) in mice. BALB/c mice were intraperitoneally pretreated with EEIH for five days, and then LPS injection was applied to induce AKI. Blood samples and kidney tissues were collected and used for histopathology, biochemical assay, enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot analyses. EEIH not only significantly dose-dependently attenuated histological damage and reduced renal myeloperoxidase (MPO) activity (from 9.77 ± 0.73 to 0.84 ± 0.30 U/g tissue) but also decreased serum creatinine (from 55.60 ± 2.70 to 27.20 ± 2.39 µmol/L) and blood urea nitrogen (BUN) (from 29.95 ± 1.96 to 16.12 ± 1.24 mmol/L) levels in LPS-treated mice. EEIH also markedly dose-dependently inhibited mRNA expression and production of TNF-α (from 140.40 ± 5.15 to 84.74 ± 5.65 pg/mg), IL-1β (from 135.54 ± 8.20 to 77.15 ± 5.34 pg/mg), IL-6 (from 168.74 ± 7.23 to 119.16 ± 9.35 pg/mg), and COX-2 in renal tissue of LPS-treated mice via downregulating mRNA and protein expressions of toll-like receptor 4 (TLR4) and phosphorylation of nuclear factor-κB (NF-κB) p65. Moreover, EEIH significantly dose-dependently reduced malondialdehyde (MDA) (from 5.43 ± 0.43 to 2.80 ± 0.25 nmol/mg prot) and NO (from 1.01 ± 0.05 to 0.24 ± 0.05 µmol/g prot) levels and increased superoxide dismutase (SOD) (from 22.32 ± 2.92 to 47.59 ± 3.79 U/mg prot) and glutathione (GSH) (from 6.57 ± 0.53 to 16.89 ± 0.68 µmol/g prot) levels in renal tissue induced by LPS through upregulating mRNA expression of nuclear factor erythroid 2 related factor 2 (Nrf2). Furthermore, EEIH inhibited LPS-induced intracellular reactive oxygen species (ROS) production from RAW264.7 cells in a concentration-dependent manner. These results suggest that EEIH has protective effects against AKI in mice through regulating inflammation and oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document