scholarly journals Immediate Effect on Ground Reaction Forces Induced by Step Training Based on Discrete Skill during Gait in Poststroke Individuals: A Pilot Study

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Masanori Wakida ◽  
Koji Ohata ◽  
Yu Hashiguchi ◽  
Kimihiko Mori ◽  
Kimitaka Hase ◽  
...  

Background/Aim. Improving walking ability, especially the step-to-step transition control, is important in individuals after stroke. Although walking is a continuous skill, the discrete skills of gait, defined as movements with a clear beginning and end, may effectively modify walking performance. This pilot study shows the immediate effects of a discrete skill-based step training on ground reaction forces (GRFs) during gait in individuals with chronic hemiplegia following stroke. Methods. Twenty-two community-dwelling patients with chronic hemiplegia participated in this study. Eight participants performed only discrete-skill step training during the loading response phase, focusing on paretic hip extension movement (LR group). Another eight performed only discrete-skill step training during the preswing phase, focusing on paretic swing movement (PSw group). The remaining six were trained using both training methods, with at least 6 months in each group to washout the influence of previous training. Therefore, the final number of participants in each group was 14. The braking and propulsive forces of GRFs were measured during gait before and after 30 repetitions of the discrete-skill step training. Results. Although both groups showed a significant increase in stride length, walking speed was increased only in the LR group. The PSw group showed an increase in braking forces of both sides without any change in propulsion. In the LR group, paretic braking impulse did not change, while nonparetic propulsion increased. Conclusion. The discrete-skill step training during loading response phase induced an increase in nonparetic propulsion, resulting in increased walking speed. This study provides a clear understanding of immediate effects of the discrete-skill step training in patients with chronic stroke and helps improve interventions in long-term rehabilitation.

1994 ◽  
Vol 18 (2) ◽  
pp. 68-77 ◽  
Author(s):  
Y. Hermodsson ◽  
C. Ekdahl ◽  
B. M. Persson ◽  
G. Roxendal

Walking speed, stance duration and ground reaction forces were studied with the use of a stable force platform (Kistler) in 24 male trans-tibial amputees and 12 healthy subjects matched for sex and age. The aim of the study was to compare the gait performance of two groups with unilateral trans-tibial amputations for either vascular disease or trauma and also to compare the results of the two groups with the results of a group of healthy subjects. Multiple linear regression analysis was used to compare the stance duration and the ground reaction forces in relation to walking speed. The vascular and traumatic amputees had significantly reduced walking speeds compared with the healthy subjects, 0.85±0.2 m/s and 0.99±0.2 m/s. respectively, as compared to 1.42±0.2 m/s. By comparing the vascular and traumatic amputees with the healthy subjects in relation to walking speed, it was shown that the gait performance of the vascular amputee differed from that of the traumatic amputee, a difference that was not caused by the reduced walking speed. The active forces during push off on both the healthy (p = 0.02) and the prosthetic leg (p = 0.003) in the trauma group were not found in the vascular group. This disparity could be an effect of the systemic disease. It may be argued that the results of this study contribute to the understanding of the reduced walking ability of the vascular amputee and should be borne in mind when planning rehabilitation.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5517 ◽  
Author(s):  
Dong Sun ◽  
Gusztáv Fekete ◽  
Qichang Mei ◽  
Yaodong Gu

Background Normative foot kinematic and kinetic data with different walking speeds will benefit rehabilitation programs and improving gait performance. The purpose of this study was to analyze foot kinematics and kinetics differences between slow walking (SW), normal walking (NW) and fast walking (FW) of healthy subjects. Methods A total of 10 healthy male subjects participated in this study; they were asked to carry out walks at a self-selected speed. After measuring and averaging the results of NW, the subjects were asked to perform a 25% slower and 25% faster walk, respectively. Temporal-spatial parameters, kinematics of the tibia (TB), hindfoot (HF), forefoot (FF) and hallux (HX), and ground reaction forces (GRFs) were recorded while the subjects walked at averaged speeds of 1.01 m/s (SW), 1.34 m/s (NW), and 1.68 m/s (FW). Results Hindfoot relative to tibia (HF/TB) and forefoot relative to hindfoot (FF/HF) dorsiflexion (DF) increased in FW, while hallux relative to forefoot (HX/FF) DF decreased. Increased peak eversion (EV) and peak external rotation (ER) in HF/TB were observed in FW with decreased peak supination (SP) in FF/HF. GRFs were increased significantly with walking speed. The peak values of the knee and ankle moments in the sagittal and frontal planes significantly increased during FW compared with SW and NW. Discussion Limited HF/TB and FF/HF motion of SW was likely compensated for increased HX/FF DF. Although small angle variation in HF/TB EV and FF/HF SP during FW may have profound effects for foot kinetics. Higher HF/TB ER contributed to the FF push-off the ground while the center of mass (COM) progresses forward in FW, therefore accompanied by higher FF/HF abduction in FW. Increased peak vertical GRF in FW may affected by decreased stance duration time, the biomechanical mechanism maybe the change in vertical COM height and increase leg stiffness. Walking speed changes accompanied with modulated sagittal plane ankle moments to alter the braking GRF during loading response. The findings of foot kinematics, GRFs, and lower limb joint moments among healthy males may set a reference to distinguish abnormal and pathological gait patterns.


2013 ◽  
Vol 29 (1) ◽  
pp. 44-48 ◽  
Author(s):  
Paulo H. Marchetti ◽  
Maria I.V. Orselli ◽  
Marcos Duarte

The aim of this study was to investigate the effects of unilateral and bilateral fatigue on both postural and power bipedal tasks. Ten healthy subjects performed two tasks: bipedal quiet standing and a maximal bipedal counter-movement jumping before and after unilateral (with either the dominant or nondominant lower limb) and bilateral (with both lower limbs) fatigue. We employed two force plates (one under each lower limb) to measure the ground reaction forces and center of pressure produced by subjects during the tasks. To quantify the postural sway during quiet standing, we calculated the resultant center of pressure (COP) speed and COP area of sway, as well as the mean weight distribution between lower limbs. To quantify the performance during the countermovement jumping, we calculated the jump height and the peak force of each lower limb. We observed that both unilateral and bilateral fatigue affected the performance of maximal voluntary jumping and standing tasks and that the effects of unilateral and bilateral fatigue were stronger in the dominant limb than in the nondominant limb during bipedal tasks. We conclude that unilateral neuromuscular fatigue affects both postural and power tasks negatively.


2000 ◽  
Vol 12 (3) ◽  
pp. 72-77 ◽  
Author(s):  
Christiane Gauthier-Gagnon ◽  
Denis Gravel ◽  
Hélène St-Amand ◽  
Christian Murie ◽  
Michel Goyette

2008 ◽  
Vol 17 (2) ◽  
pp. 148-159 ◽  
Author(s):  
John B. Cronin ◽  
Eadric Bressel ◽  
Loren Finn

Context:Frequency and magnitude of ground reaction forces (GRF) have been implicated in causing injuries such as “jumpers knee.”Objective:To investigate whether a single session of augmented feedback concerning landing technique would decrease GRF.Design:Pretest posttest experimental design.Setting:University biomechanics laboratory.Participants:Fifteen female Division 1 intercollegiate volleyball players.Intervention:Participants were required to land on a force platform after spiking a volleyball from a four-step approach before and after an intervention involving visual and aural augmented feedback on correct jumping and landing technique.Main Outcome Measures:Mediolateral (ML), anterioposterior (AP), and vertical (V) GRF normalized to body weight (BW).Results:Augmented feedback was found to significantly (P = 0.01) decrease VGRF by 23.6% but not ML (25%, P = 0.16) and AP (4.9%, P = 0.40) peak GRF.Conclusions:A single session of augmented feedback may be effective in reducing VGRF in collegiate athletes.


2022 ◽  
Vol 15 ◽  
Author(s):  
Davide Mazzoli ◽  
Giacomo Basini ◽  
Paolo Prati ◽  
Martina Galletti ◽  
Francesca Mascioli ◽  
...  

In literature, indices of overall walking ability that are based on ground reaction forces have been proposed because of their ease of administration with patients. In this study, we analyzed the correlation between the indices of dynamic loading and propulsion ability of 40 chronic hemiparetic post-stroke patients with equinus foot deviation and a set of clinical assessments of ankle joint deviations and walking ability. Ankle passive and active range of motion (ROM) and triceps surae spasticity were considered, along with walking speed and three complementary scales of walking ability focusing respectively on the need for assistance on functional mobility, including balance and transfers, and the limitation in social participation. The correlation between the ground reaction force-based indices and both clinical and functional variables was carried out using the non-parametric Spearman correlation coefficient. Both indices were correlated to 8 of the 10 investigated variables, thus supporting their use. In particular, the dynamic propulsive ability was correlated with all functional scales (rho = 0.5, p < 0.01), and has the advantage of being a continuous variable. Among clinical assessments, limited ankle ROM affected walking ability the most, while spasticity did not. Since the acquisition of ground reaction forces does not require any patient prepping, the derived indices can be used during the rehabilitation period to quickly detect small improvements that, over time, might lead to the broad changes detectable by clinical scales, as well as to immediately highlight the lack of these improvements, thus suggesting adjustments to the ongoing rehabilitation approach.


Sign in / Sign up

Export Citation Format

Share Document