Augmented Feedback Reduces Ground Reaction Forces in the Landing Phase of the Volleyball Spike Jump

2008 ◽  
Vol 17 (2) ◽  
pp. 148-159 ◽  
Author(s):  
John B. Cronin ◽  
Eadric Bressel ◽  
Loren Finn

Context:Frequency and magnitude of ground reaction forces (GRF) have been implicated in causing injuries such as “jumpers knee.”Objective:To investigate whether a single session of augmented feedback concerning landing technique would decrease GRF.Design:Pretest posttest experimental design.Setting:University biomechanics laboratory.Participants:Fifteen female Division 1 intercollegiate volleyball players.Intervention:Participants were required to land on a force platform after spiking a volleyball from a four-step approach before and after an intervention involving visual and aural augmented feedback on correct jumping and landing technique.Main Outcome Measures:Mediolateral (ML), anterioposterior (AP), and vertical (V) GRF normalized to body weight (BW).Results:Augmented feedback was found to significantly (P = 0.01) decrease VGRF by 23.6% but not ML (25%, P = 0.16) and AP (4.9%, P = 0.40) peak GRF.Conclusions:A single session of augmented feedback may be effective in reducing VGRF in collegiate athletes.

2005 ◽  
Vol 14 (4) ◽  
pp. 338-345 ◽  
Author(s):  
Sam T. Johnson ◽  
Grace M. Golden ◽  
John A. Mercer ◽  
Brent C. Mangus ◽  
Mark A. Hoffman

Context:Form skipping has been used to help injured athletes progress to running. Because little research has been done on form-skipping mechanics, its justification as a progression to running exercises is unclear.Objective:To compare ground-reaction forces (GRF) during form skipping and running in healthy subjects at clinically relevant speeds, 1.75 m/s and 3.83 m/s, respectively.Design:Dependentttests (α= .05).Setting:Sports-injury research center.Participants:9 male college athletes (age 20 ± 1.33 years, mass 848.4 ± 43.24 N, height 1.80 ± 0.07 m).Main Outcome Measures:Average (Fzavg) and maximum (Fzmax) vertical GRF and (Fy) braking impulse were compared.Results:FzavgandFzmaxwere greater during running than during form skipping (P< .05). Braking impulses were not different (P> .05).Conclusions:It appears thatFz, but not theFy, GRF might explain why form skipping might be an appropriate progression to running.


2020 ◽  
Vol 36 (5) ◽  
pp. 307-312
Author(s):  
James Scales ◽  
Jamie M. O’Driscoll ◽  
Damian Coleman ◽  
Dimitrios Giannoglou ◽  
Ioannis Gkougkoulis ◽  
...  

The primary purpose of this study was to examine lateral deviations in center of pressure as a result of an extreme-duration load carriage task, with particular focus on heel contact. A total of 20 (n = 17 males and n = 3 females) soldiers from a special operation forces unit (body mass 80.72 [21.49] kg, stature 178.25 [8.75] cm, age 26 [9] y) underwent gait plantar pressure assessment and vertical jump testing before and after a 43-km load carriage event (duration 817.02 [32.66] min) carrying a total external load of 29.80 (1.05) kg. Vertical jump height decreased by 18.62% (16.85%) from 0.30 (0.08) to 0.24 (0.07) m, P < .001. Loading peak and midstance force minimum were significantly increased after load carriage (2.59 [0.51] vs 2.81 [0.61] body weight, P = .035, Glass delta = 0.44 and 1.28 [0.40] vs 1.46 [0.41] body weight, P = .015, Glass delta = 0.45, respectively) and increases in lateral center of pressure displacement were observed as a result of the load carriage task 14.64 (3.62) to 16.97 (3.94) mm, P < .029. In conclusion, load carriage instigated a decrease in neuromuscular function alongside increases in ground reaction forces associated with injury risk and center of pressure changes associated with ankle sprain risk. Practitioners should consider that possible reductions in ankle stability remain once load carriage has been completed, suggesting soldiers are still at increased risk of injury even once the load has been removed.


1999 ◽  
Vol 86 (5) ◽  
pp. 1657-1662 ◽  
Author(s):  
Young-Hui Chang ◽  
Rodger Kram

Previous studies have suggested that generating vertical force on the ground to support body weight (BWt) is the major determinant of the metabolic cost of running. Because horizontal forces exerted on the ground are often an order of magnitude smaller than vertical forces, some have reasoned that they have negligible cost. Using applied horizontal forces (AHF; negative is impeding, positive is aiding) equal to −6, −3, 0, +3, +6, +9, +12, and +15% of BWt, we estimated the cost of generating horizontal forces while subjects were running at 3.3 m/s. We measured rates of oxygen consumption (V˙o 2) for eight subjects. We then used a force-measuring treadmill to measure ground reaction forces from another eight subjects. With an AHF of −6% BWt,V˙o 2 increased 30% compared with normal running, presumably because of the extra work involved. With an AHF of +15% BWt, the subjects exerted ∼70% less propulsive impulse and exhibited a 33% reduction inV˙o 2. Our data suggest that generating horizontal propulsive forces constitutes more than one-third of the total metabolic cost of normal running.


2008 ◽  
Vol 24 (3) ◽  
pp. 288-297 ◽  
Author(s):  
Alena M. Grabowski ◽  
Rodger Kram

The biomechanical and metabolic demands of human running are distinctly affected by velocity and body weight. As runners increase velocity, ground reaction forces (GRF) increase, which may increase the risk of an overuse injury, and more metabolic power is required to produce greater rates of muscular force generation. Running with weight support attenuates GRFs, but demands less metabolic power than normal weight running. We used a recently developed device (G-trainer) that uses positive air pressure around the lower body to support body weight during treadmill running. Our scientific goal was to quantify the separate and combined effects of running velocity and weight support on GRFs and metabolic power. After obtaining this basic data set, we identified velocity and weight support combinations that resulted in different peak GRFs, yet demanded the same metabolic power. Ideal combinations of velocity and weight could potentially reduce biomechanical risks by attenuating peak GRFs while maintaining aerobic and neuromuscular benefits. Indeed, we found many combinations that decreased peak vertical GRFs yet demanded the same metabolic power as running slower at normal weight. This approach of manipulating velocity and weight during running may prove effective as a training and/or rehabilitation strategy.


2013 ◽  
Vol 29 (1) ◽  
pp. 44-48 ◽  
Author(s):  
Paulo H. Marchetti ◽  
Maria I.V. Orselli ◽  
Marcos Duarte

The aim of this study was to investigate the effects of unilateral and bilateral fatigue on both postural and power bipedal tasks. Ten healthy subjects performed two tasks: bipedal quiet standing and a maximal bipedal counter-movement jumping before and after unilateral (with either the dominant or nondominant lower limb) and bilateral (with both lower limbs) fatigue. We employed two force plates (one under each lower limb) to measure the ground reaction forces and center of pressure produced by subjects during the tasks. To quantify the postural sway during quiet standing, we calculated the resultant center of pressure (COP) speed and COP area of sway, as well as the mean weight distribution between lower limbs. To quantify the performance during the countermovement jumping, we calculated the jump height and the peak force of each lower limb. We observed that both unilateral and bilateral fatigue affected the performance of maximal voluntary jumping and standing tasks and that the effects of unilateral and bilateral fatigue were stronger in the dominant limb than in the nondominant limb during bipedal tasks. We conclude that unilateral neuromuscular fatigue affects both postural and power tasks negatively.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Masanori Wakida ◽  
Koji Ohata ◽  
Yu Hashiguchi ◽  
Kimihiko Mori ◽  
Kimitaka Hase ◽  
...  

Background/Aim. Improving walking ability, especially the step-to-step transition control, is important in individuals after stroke. Although walking is a continuous skill, the discrete skills of gait, defined as movements with a clear beginning and end, may effectively modify walking performance. This pilot study shows the immediate effects of a discrete skill-based step training on ground reaction forces (GRFs) during gait in individuals with chronic hemiplegia following stroke. Methods. Twenty-two community-dwelling patients with chronic hemiplegia participated in this study. Eight participants performed only discrete-skill step training during the loading response phase, focusing on paretic hip extension movement (LR group). Another eight performed only discrete-skill step training during the preswing phase, focusing on paretic swing movement (PSw group). The remaining six were trained using both training methods, with at least 6 months in each group to washout the influence of previous training. Therefore, the final number of participants in each group was 14. The braking and propulsive forces of GRFs were measured during gait before and after 30 repetitions of the discrete-skill step training. Results. Although both groups showed a significant increase in stride length, walking speed was increased only in the LR group. The PSw group showed an increase in braking forces of both sides without any change in propulsion. In the LR group, paretic braking impulse did not change, while nonparetic propulsion increased. Conclusion. The discrete-skill step training during loading response phase induced an increase in nonparetic propulsion, resulting in increased walking speed. This study provides a clear understanding of immediate effects of the discrete-skill step training in patients with chronic stroke and helps improve interventions in long-term rehabilitation.


1999 ◽  
Vol 202 (24) ◽  
pp. 3565-3573 ◽  
Author(s):  
D.V. Lee ◽  
J.E. Bertram ◽  
R.J. Todhunter

During quadrupedal trotting, diagonal pairs of limbs are set down in unison and exert forces on the ground simultaneously. Ground-reaction forces on individual limbs of trotting dogs were measured separately using a series of four force platforms. Vertical and fore-aft impulses were determined for each limb from the force/time recordings. When mean fore-aft acceleration of the body was zero in a given trotting step (steady state), the fraction of vertical impulse on the forelimb was equal to the fraction of body weight supported by the forelimbs during standing (approximately 60 %). When dogs accelerated or decelerated during a trotting step, the vertical impulse was redistributed to the hindlimb or forelimb, respectively. This redistribution of the vertical impulse is due to a moment exerted about the pitch axis of the body by fore-aft accelerating and decelerating forces. Vertical forces exerted by the forelimb and hindlimb resist this pitching moment, providing stability during fore-aft acceleration and deceleration.


2007 ◽  
Vol 97 (4) ◽  
pp. 2663-2675 ◽  
Author(s):  
Simon F. Giszter ◽  
Michelle R. Davies ◽  
Virginia Graziani

Some rats spinalized P1/P2 achieve autonomous weight-supported locomotion and quiet stance as adults. We used force platforms and robot-applied perturbations to test such spinalized rats ( n = 6) that exhibited both weight-supporting locomotion and stance, and also normal rats ( n = 8). Ground reaction forces in individual limbs and the animals' center of pressure were examined. In normal rats, both forelimbs and hindlimbs participated actively to control horizontal components of ground reaction forces. Rostral perturbations increased forelimb ground reaction forces and caudal perturbations increased hindlimb ground reaction forces. Operate rats carried 60% body weight on the forelimbs and had a more rostral center of pressure placement. The pattern in normal rats was to carry significantly more weight on the hindlimbs in quiet stance (roughly 60%). The strategy of operate rats to compensate for perturbations was entirely in forelimbs; as a result, the hindlimbs were largely isolated from the perturbation. Stiffness magnitude of the whole body was measured: its magnitude was hourglass shaped, with the principal axis oriented rostrocaudally. Operate rats were significantly less stiff—only 60–75% of normal rats' stiffness. The injured rats adopt a stance strategy that isolates the hindlimbs from perturbation and may thus prevent hindlimb loadings. Such loadings could initiate reflex stepping, which we observed. This might activate lumbar pattern generators used in their locomotion. Adult spinalized rats never achieve independent hindlimb weight-supported stance. The stance strategy of the P1 spinalized rats differed strongly from the behavior of intact rats and may be difficult for rats spinalized as adults to master.


2011 ◽  
Vol 133 (12) ◽  
Author(s):  
Jeff A. Nessler ◽  
Moustafa Moustafa-Bayoumi ◽  
Dalziel Soto ◽  
Jessica Duhon ◽  
Ryan Schmitt

Robotic locomotor training devices have gained popularity in recent years, yet little has been reported regarding contact forces experienced by the subject performing automated locomotor training, particularly in animal models of neurological injury. The purpose of this study was to develop a means for acquiring contact forces between a robotic device and a rodent model of spinal cord injury through instrumentation of a robotic gait training device (the rat stepper) with miniature force/torque sensors. Sensors were placed at each interface between the robot arm and animal’s hindlimb and underneath the stepping surface of both hindpaws (four sensors total). Twenty four female, Sprague-Dawley rats received mid-thoracic spinal cord transections as neonates and were included in the study. Of these 24 animals, training began for 18 animals at 21 days of age and continued for four weeks at five min/day, five days/week. The remaining six animals were untrained. Animal-robot contact forces were acquired for trained animals weekly and untrained animals every two weeks while stepping in the robotic device with both 60 and 90% of their body weight supported (BWS). Animals that received training significantly increased the number of weight supported steps over the four week training period. Analysis of raw contact forces revealed significant increases in forward swing and ground reaction forces during this time, and multiple aspects of animal-robot contact forces were significantly correlated with weight bearing stepping. However, when contact forces were normalized to animal body weight, these increasing trends were no longer present. Comparison of trained and untrained animals revealed significant differences in normalized ground reaction forces (both horizontal and vertical) and normalized forward swing force. Finally, both forward swing and ground reaction forces were significantly reduced at 90% BWS when compared to the 60% condition. These results suggest that measurement of animal-robot contact forces using the instrumented rat stepper can provide a sensitive and reliable measure of hindlimb locomotor strength and control of flexor and extensor muscle activity in neurologically impaired animals. Additionally, these measures may be useful as a means to quantify training intensity or dose-related functional outcomes of automated training.


2017 ◽  
Vol 36 (12) ◽  
pp. 1392-1401 ◽  
Author(s):  
Ryu Nagahara ◽  
Mirai Mizutani ◽  
Akifumi Matsuo ◽  
Hiroaki Kanehisa ◽  
Tetsuo Fukunaga

Sign in / Sign up

Export Citation Format

Share Document