scholarly journals Physiological and Biochemical Vascular Reactivity Parameters of Angiotensin II and the Action of Biased Agonist TRV023

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Marcos André Soares Leal ◽  
Thanisia de Almeida ◽  
João Guilherme Torres ◽  
Luciene Cristina Gastalho Campos ◽  
Elisardo Corral Vasquez ◽  
...  

Vascular reactivity experiments using isolated aortic rings have been widely used as a model for physiological and pharmacological studies since the early sixties. Here, we suggest several parameters that the researcher should pay attention to when investigating angiotensin II in their experimental models. Angiotensin II is one of the active peptides of the renin-angiotensin system and exerts its effect through the AT1 and AT2 receptors. Some studies seek to understand the effects of angiotensin II receptors at the vascular level by using vascular reactivity experiments. However, because of the large number of variations, there are only a handful of reactivity studies that seek to use this method. Thus, the objective of this study was to standardize experimental methods with angiotensin II, through vascular reactivity protocols. For this, variables such as basal tension, concentration interval, single concentration, curve concentration response, and multiple experiments using the same aortic ring were developed using the technique of vascular reactivity in an organ bath. This is the first study that has standardized the vascular reactivity protocol. In addition, we demonstrated the effects of TRV023-biased ligand of the AT1R at vascular sites.

Dose-Response ◽  
2017 ◽  
Vol 15 (4) ◽  
pp. 155932581773793 ◽  
Author(s):  
Diego Lezama-Martínez ◽  
Ignacio Valencia-Hernández ◽  
Jazmin Flores-Monroy ◽  
Luisa Martínez-Aguilar

In hypertension, the combination therapy is frequently used to obtain a better therapeutic effect and reduce adverse effects. One effective combination is with inhibitors and β-blockers of renin–angiotensin system. Although the mechanisms of action of each drug are already known, the antihypertensive mechanism is more complex and therefore the combined treatment mechanism is unclear. Specifically, the effect of the treatments of angiotensin-converting enzyme inhibitor or AT1 receptor antagonist with β-blocker on the angiotensin II and bradykinin reactivity has not been studied. For this reason, we evaluated the interaction between propranolol and captopril or losartan on vascular reactivity to bradykinin and angiotensin II in spontaneously hypertensive rat. We constructed concentration–response curves to angiotensin II and bradykinin after treatment of SHR with propranolol–captopril or propranolol–losartan by using rat aortic rings. While losartan or captopril with propranolol potentiated bradykinin-induced vasodilation effect, the propranolol–losartan interaction decreased the angiotensin II-induced vasoconstriction. In addition, the combinations did not reduce the heart rate significantly. These results suggest that the combined therapy decreased blood pressure to normotensive values and showed less effect for angiotensin II and greater effect for bradykinin than monotherapy which could contribute in the antihypertensive effect.


2014 ◽  
Vol 142 (11-12) ◽  
pp. 756-763 ◽  
Author(s):  
Rajko Igic ◽  
Ranko Skrbic

Research on the renin-angiotensin system (RAS) has contributed significantly to advances in understanding cardiovascular and renal homeostasis and to the treatment of cardiovascular diseases. This review offers a brief history of the RAS with an overview of its major components and their functions, as well as blockers of the RAS, their clinical usage and current research that targets various components of the RAS. Because angiotensin-converting enzyme (ACE) metabolizes two biologically active peptides, one in the kallikrein-kinin system (KKS) and one in the RAS, it is the essential connection between the two systems. ACE releases very powerful hypertensive agent, angiotensin II and also inactivates strong hypotensive peptide, bradykinin. Inhibition of ACE thus has a dual effect, resulting in decreased angiotensin II and increased bradykinin. We described the KKS as well.


1993 ◽  
Vol 4 (6) ◽  
pp. 1354-1361
Author(s):  
C T Harker ◽  
M P O'Donnell ◽  
B L Kasiske ◽  
W F Keane ◽  
S A Katz

Recently, the obese Zucker rat (OZR), an animal model of non-insulin-dependent (type II) diabetes, was shown to respond to converting enzyme inhibition with decreased albuminuria and a marked attenuation of glomerular injury. It was hypothesized that the OZR would possess low plasma renin values and an increased vascular responsiveness to angiotensin II, and therefore, the renin-angiotensin system (PRA, active renin, inactive renin, renal renin content, and plasma angiotensinogen) and vascular reactivity in OZR at 10 and 24 wk of age were investigated. PRA and renin concentration, inactive plasma renin, and renal renin content were all significantly (P < 0.05) reduced in OZR when compared with age-matched lean controls. The ratio of inactive to total renin was significantly increased in the OZR. OZR aortic ring vascular reactivity to KCl, norepinephrine, and angiotensin II was assessed. Despite essentially equal or increased contractile responses to KCl and norepinephrine at both 10 and 24 wk of age, the OZR was not more sensitive to angiotensin II and displayed a significantly reduced contractile response to angiotensin II at 24 wk of age, when compared with lean age-matched controls. It was concluded that the renal protective effect of converting enzyme inhibition in OZR, despite significantly reduced PRA and concentration, inactive plasma renin, and renal renin content, may not be due to a diabetes-induced increased vascular reactivity to angiotensin II.


1999 ◽  
Vol 77 (12) ◽  
pp. 974-979 ◽  
Author(s):  
Orit Shechtman ◽  
Zhongjie Sun ◽  
Melvin J Fregly ◽  
Michael J Katovich

Chronic exposure of rats to cold for 1-3 weeks results in a mild form of hypertension. The renin-angiotensin system (RAS) has been implicated in this model of cold-induced hypertension. Previously we have characterized the vascular responsiveness in cold-acclimated animals, using aortic tissue, and recent studies have focused on the thermoregulatory responses of angiotensin II (AngII), utilizing the tail artery of the rat. Therefore in the current study we evaluated the vascular responsiveness of cold-treated rats to AngII in both aorta and tail artery at 2 and 4 weeks of cold exposure (5 ± 2°C). Systolic blood pressures were significantly elevated in cold-treated animals compared with control animals at both 2 and 4 weeks of cold exposure. At both of these time points body weights were reduced and ventricular weights were increased in cold-treated animals. After 2 weeks of cold exposure the vascular responsiveness of the aorta to AngII was significantly lower than that of controls. This vascular responsiveness to AngII was elevated and returned to control levels after 5 weeks of cold exposure. However, this pattern was not observed in the tail artery. The vascular responsiveness of tail artery rings from cold-treated rats to AngII was significantly greater than that of control animals during both 2 and 5 weeks of exposure to cold. The vascular contractile responses of both the aorta and tail artery to KCl in the cold-treated animals was not different from that of the control animals maintained at ambient room temperature, suggesting that the vascular smooth muscle contractile components were not altered by the cold exposure. Thus, the in vitro vascular reactivity to the receptor-mediated vasoconstrictor AngII was decreased in the sparsely innervated aorta and increased in the more densely innervated tail artery of the cold-treated animals when compared with controls. These results suggest that the increased responsiveness of AngII on the smooth muscle of the tail artery may play a role in adaptation to the cold and the maintenance of cold-induced hypertension.Key words: cold exposure, hypertension, renin-angiotensin system, vascular responsiveness, angiotensin II.


2007 ◽  
Vol 292 (1) ◽  
pp. F82-F91 ◽  
Author(s):  
Hossam A. Shaltout ◽  
Brian M. Westwood ◽  
David B. Averill ◽  
Carlos M. Ferrario ◽  
Jorge P. Figueroa ◽  
...  

Despite the evidence that angiotensin-converting enzyme (ACE)2 is a component of the renin-angiotensin system (RAS), the influence of ACE2 on angiotensin metabolism within the kidney is not well known, particularly in experimental models other than rats or mice. Therefore, we investigated the metabolism of the angiotensins in isolated proximal tubules, urine, and serum from sheep. Radiolabeled [125I]ANG I was hydrolyzed primarily to ANG II and ANG-(1–7) by ACE and neprilysin, respectively, in sheep proximal tubules. The ACE2 product ANG-(1–9) from ANG I was not detected in the absence or presence of ACE and neprilysin inhibition. In contrast, the proximal tubules contained robust ACE2 activity that converted ANG II to ANG-(1–7). Immunoblots utilizing an NH2 terminal-directed ACE2 antibody revealed a single 120-kDa band in proximal tubule membranes. ANG-(1–7) was not a stable product in the tubule preparation and was rapidly hydrolyzed to ANG-(1–5) and ANG-(1–4) by ACE and neprilysin, respectively. Comparison of activities in the proximal tubules with nonsaturating concentrations of substrate revealed equivalent activities for ACE (ANG I to ANG II: 248 ± 17 fmol·mg−1·min−1) and ACE2 [ANG II to ANG-(1–7): 253 ± 11 fmol·mg−1·min−1], but lower neprilysin activity [ANG II to ANG-(1–4): 119 ± 24 fmol·mg−1·min−1; P < 0.05 vs. ACE or ACE2]. Urinary metabolism of ANG I and ANG II was similar to the proximal tubules; soluble ACE2 activity was also detectable in sheep serum. In conclusion, sheep tissues contain abundant ACE2 activity that converts ANG II to ANG-(1–7) but does not participate in the processing of ANG I into ANG-(1–9).


2011 ◽  
Vol 7 (4) ◽  
pp. 254 ◽  
Author(s):  
Giuliano Tocci ◽  
Lorenzo Castello ◽  
Massimo Volpe ◽  
◽  
◽  
...  

The renin–angiotensin system (RAS) has a key role in the maintenance of cardiovascular homeostasis, and water and electrolyte metabolism in healthy subjects, as well as in several diseases including hypertension, left ventricular hypertrophy and dysfunction, coronary artery disease, renal disease and congestive heart failure. These conditions are all characterised by abnormal production and activity of angiotensin II, which represents the final effector of the RAS. Over the last few decades, accumulating evidence has demonstrated that antihypertensive therapy based on angiotensin II receptor blockers (ARBs) has a major role in the selective antagonism of the main pathological activities of angiotensin II. Significant efforts have been made to demonstrate that blocking the angiotensin II receptor type 1 (AT1) subtype receptors through ARB-based therapy results in proven benefits in different clinical settings. In this review, we discuss the main benefits of antihypertensive strategies based on ARBs in terms of their efficacy, safety and tolerability.


TH Open ◽  
2020 ◽  
Vol 04 (02) ◽  
pp. e138-e144 ◽  
Author(s):  
Wolfgang Miesbach

AbstractThe activated renin–angiotensin system induces a prothrombotic state resulting from the imbalance between coagulation and fibrinolysis. Angiotensin II is the central effector molecule of the activated renin–angiotensin system and is degraded by the angiotensin-converting enzyme 2 to angiotensin (1–7). The novel coronavirus infection (classified as COVID-19) is caused by the new coronavirus SARS-CoV-2 and is characterized by an exaggerated inflammatory response that can lead to severe manifestations such as acute respiratory distress syndrome, sepsis, and death in a proportion of patients, mostly elderly patients with preexisting comorbidities. SARS-CoV-2 uses the angiotensin-converting enzyme 2 receptor to enter the target cells, resulting in activation of the renin–angiotensin system. After downregulating the angiotensin-converting enzyme 2, the vasoconstrictor angiotensin II is increasingly produced and its counterregulating molecules angiotensin (1–7) reduced. Angiotensin II increases thrombin formation and impairs fibrinolysis. Elevated levels were strongly associated with viral load and lung injury in patients with severe COVID-19. Therefore, the complex clinical picture of patients with severe complications of COVID-19 is triggered by the various effects of highly expressed angiotensin II on vasculopathy, coagulopathy, and inflammation. Future treatment options should focus on blocking the thrombogenic and inflammatory properties of angiotensin II in COVID-19 patients.


Sign in / Sign up

Export Citation Format

Share Document