scholarly journals Facile Method for Obtaining Gold-Coated Polyester Surfaces with Antimicrobial Properties

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
M. Drobota ◽  
M. Butnaru ◽  
N. Vornicu ◽  
O. Plopa ◽  
M. Aflori

The antimicrobial and antifungal activity of polymers used in medical devices has been extensively studied due to the growing impact of hospital-related infections in patients. The ideal biocidal polymeric materials should be very effective in the microorganism’s inhibition, not toxic to the human body, and environmentally friendly. In this context, this work is aimed at obtaining antimicrobial and antifungal properties at the polyester film surfaces without introducing toxic effects. Poly (ethylene terephthalate) (PET) films were functionalized with Ar plasma and then immersed in a solution containing gold nanoparticles (AuNps). The results demonstrated the appearance of the hydrophilic groups on the film surface after modification of PET film by plasma Ar treatment and the formation of the polar groups such as C=O, COO-, and OH, which then reacted with AuNps. The changes induced in the treated polymer samples were investigated in terms of AuNp adsorption efficiency on polyester film by contact angle, profilometry, Scanning Electron Microscopy (SEM), Attenuated Total Reflectance Spectroscopy-Fourier Transform Infrared (ATR-FTIR), and X-ray Photoelectron Spectroscopy (XPS) measurements. The morphological and structural analyses have shown a good adhesion of AuNps at treated film surfaces. The results of biocompatibility antimicrobial and antifungal tests proved the nontoxic behavior of the sample and its good antimicrobial and antifungal activity.

2019 ◽  
Vol 27 (1) ◽  
pp. 128-136
Author(s):  
Mioara Drobota ◽  
Alexandru Trandabat ◽  
Marius Pislaru

Abstract This paper reports the modification of a polyester film surface in air plasma at room temperature. In order to evaluate the efficiency of the plasma treatment, the modified surface of the PET films was characterized by contact angle and ATR-FTIR spectroscopy.


2005 ◽  
Vol 288-289 ◽  
pp. 421-424
Author(s):  
F. Li ◽  
Jin Wang ◽  
H. Sun ◽  
Nan Huang

Poly(ethylene terephthalate) films were exposed under argon plasma glow discharge and induced polymerization of acrylic acid (AA) in order to introduce carboxylic acid group onto PET (PET-AA) assisting by ultroviolet radiation. Hirudin-immobilized PETs were prepared by the grafting of PET-AA, followed by chemical reaction with hirudin. The surface structure of the treated PET is determined by X-ray photoelectron spectroscopy (XPS). The wettability and surface free energy, interface free energy of the films is investigated by contact angle measurement. Platelet adhesion evaluatiion is conducted to examine the blood compatibility in vitro. Scanning electron microscopy (SEM) and optical microscopy reveal that the amounts of adhered, aggregated and morphologically changed platelets are reduced on hirudin-immobilized PET films.


Author(s):  
Donggang Yao ◽  
Pratapkumar Nagarajan ◽  
K. R. T. Ramasubramani

In the standard hot embossing process for thermoplastic polymers, thermal cycling is needed in order to soften and subsequently cool and solidify the polymer. This thermal cycling, however, not only results in long cycle times but also deteriorates the quality of embossed features. A new embossing method based on slowly crystallizing polymers was investigated to eliminate thermal cycling. Poly(ethylene terephthalate) was used as a model system for demonstration. Due to its slow crystallization, amorphous PET film can be made by casting a PET melt onto a chill roll. The amorphous PET film was embossed at a constant temperature of 180°C for a period of time comparable to or longer than PET’s half-time of crystallization. During constant-temperature embossing, the film first liquefies, caused by rubber softening of the amorphous phase, and then solidifies, resulting from the crystallization of the amorphous phase. Since the embossed film is hardened under the constant mold temperature, no cooling is needed. Selected micro features, including circular microchannels and high aspect ratio rectangular microchannels, were successfully embossed using a total cycle time about 40 s.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 825 ◽  
Author(s):  
Lidija Fras Zemljič ◽  
Nena Dimitrušev ◽  
Rok Zaplotnik ◽  
Simona Strnad

The main aim of this investigation was to study the interaction of sulfated xylans as antithrombotic substances with poly(ethylene terephthalate) (PET) model films as a model for blood contacting surfaces. The adsorption of sulfated xylans onto PET model films was studied as a function of pH and ionic strength using the quartz crystal microbalance with dissipation (QCM-D) technique. The application of positively charged polyethyleneimine (PEI) as an anchoring polymer was done to improve the adsorption. The hydrophilic/hydrophobic properties of functionalized PET surfaces were monitored by goniometry, whilst their elemental composition was determined by X-ray photoelectron spectroscopy. Sulfated xylans adsorbed favorably at pH 5 by physical interactions and by entropy gain driven adsorption. Higher ionic strengths of solutions improved adsorption, due to the reduction of electrostatic repulsive forces between PET surfaces and anionic xylans’ macromolecules. The intermediate PEI layer caused more extensive and stable adsorption due to Coulomb interactions. The surface modifications presented in this work provided important information regarding the adsorption/desorption phenomena between antithrombotic sulfated xylans and PET surfaces. The latter is of great interest when preparing advanced polymer composite material such as functional antithrombotic PET surfaces for blood-contacting medical devices and presents an extremely challenging research field.


2016 ◽  
Vol 32 (3) ◽  
pp. 263-279 ◽  
Author(s):  
Sadiya Anjum ◽  
Amlan Gupta ◽  
Deepika Sharma ◽  
Shanti Kumari ◽  
Plabita Sahariah ◽  
...  

This study deals with the development of bioactive poly(ethylene terephthalate) surgical suture by adopting the immobilization route with bioactive nanogels and chlorhexidine. Carbon dioxide plasma was used for the generation of carboxyl functionality on poly(ethylene terephthalate) surface for the immobilization of the bioactive components. The nanosilver nanogel was prepared using polyethylene glycol which helps in the reduction of silver ions into nanosilver as well as the stabilization of nanoparticles. The particle size of the nanogels, as evaluated by high-resolution transmission electron microscopy, was observed to be in the range of 10–50 nm. Surface functionalization of poly(ethylene terephthalate) filament was observed by attenuated total reflectance measurements and mechanical studies were investigated by Instron. Elemental analysis and surface topography were carried out by energy dispersive X-ray and atomic force microscopy. The cumulative release of silver from the dressing was found to be 68% of the total loading after 72 h. Coated sutures have excellent antimicrobial activity against both Escherichia coli and Staphylococcus aureus. In vivo wound healing and histopathology studies were carried out over a period of 72 h for skin wounds created on Swiss albino mice. Fast healing was observed in nanogel-treated wounds without any inflammatory effects on the newly generated skin. These sutures offer improved healing along with excellent antimicrobial properties and appear to be promising material against surgical infection.


2013 ◽  
Vol 11 (11) ◽  
pp. 1786-1798 ◽  
Author(s):  
Mioara Drobota ◽  
Zdenka Persin ◽  
Lidija Zemljic ◽  
Tamiselvan Mohan ◽  
Karin Stana-Kleinschek ◽  
...  

AbstractThe functionalization of poly(ethylene terephthalate) (PET) surface films by reactions with multifunctional amines such as triethylenetetramine (TETA), and tetraethylenepentamine (TEPA) was investigated. For the functionalization of PET films surface we used a new way of treatment, a “sandwich model”. Physical-chemical properties of functionalized PET films were analysed. Qualitative and quantitative determination of the introduced amine groups were examined by means of Fourier Transform Infrared Attenuated Total Reflexion (FTIR — ATR), X-ray photoelectron spectroscopy (XPS), and potentiometric titration. Gained wetting properties were determined by using contact angle measurements and thoroughly analysed by acid-base approach. In addition, surface topography was investigated by atomic force microscopy (AFM). The amount of the introduced amino groups after TETA incorporation has been found to be two times higher as compared to TEPA. Wetting properties were significantly improved after aminolysis. Surface free energy was higher for PET — TETA treated film than that observed for PET — TEPA treated which is in accordance with titration results. The collagen immobilization onto PET treated films was evidenced by using AFM and subsequently by using XPS.


Sign in / Sign up

Export Citation Format

Share Document