scholarly journals Corrigendum to “Protective Effects of Simvastatin, a Lipid Lowering Agent, Against Oxidative Damage in Experimental Diabetic Rats”

2020 ◽  
Vol 2020 ◽  
pp. 1-1
Author(s):  
Ahmed M. Mohamadin ◽  
Ahmed A. Elberry ◽  
Hala S. Abdel Gawad ◽  
Gehan M. Morsy ◽  
Fahad A. Al-Abbasi

2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Ahmed M. Mohamadin ◽  
Ahmed A. Elberry ◽  
Hala S. Abdel Gawad ◽  
Gehan M. Morsy ◽  
Fahad A. Al-Abbasi

The present study was undertaken to evaluate the possible protective effects of simvastatin (SMV) against oxidative stress in streptozotocin- (STZ)-induced diabetic rats. Diabetes was induced experimentally in rats by i.p. injection of STZ in a dose of 60 mg/kg bwt. After 5 weeks of STZ injection, there were apparent reductions in the animal body weight and significant increase in blood glucose, HbA1c, urea, creatinine, AST, ALT, and lipid profiles with a concomitant decrease in total hemoglobin, plasma glutathione and vitamin C as compared to the control group. The treatment with SMV at a dose (10 mg/kg, orally) normalized all the above-mentioned biochemical parameters in STZ-induced diabetic rats.In vitrostudies confirmed the free radical scavenging and antioxidant activity of SMV. Therefore, the present results revealed that SMV has a protective effect against STZ-induced oxidative damage by scavenging the free radicals generation and restoring the enzymatic and nonenzymatic antioxidant systems.


2010 ◽  
Vol 186 (2) ◽  
pp. 219-227 ◽  
Author(s):  
Kehkashan Parveen ◽  
Mohd. Rashid Khan ◽  
Mohd. Mujeeb ◽  
Waseem A. Siddiqui

2019 ◽  
Vol 20 (10) ◽  
pp. 2441 ◽  
Author(s):  
Valeria Sorrenti ◽  
Marco Raffaele ◽  
Luca Vanella ◽  
Rosaria Acquaviva ◽  
Loredana Salerno ◽  
...  

Type 1 diabetes mellitus (T1D) is a chronic autoimmune disease resulting in the destruction of insulin producing β-cells of the pancreas, with consequent insulin deficiency and excessive glucose production. Hyperglycemia results in increased levels of reactive oxygen species (ROS) and nitrogen species (RNS) with consequent oxidative/nitrosative stress and tissue damage. Oxidative damage of the pancreatic tissue may contribute to endothelial dysfunction associated with diabetes. The aim of the present study was to investigate if the potentially protective effects of phenethyl ester of caffeic acid (CAPE), a natural phenolic compound occurring in a variety of plants and derived from honeybee hive propolis, and of a novel CAPE analogue, as heme oxygenase-1 (HO-1) inducers, could reduce pancreatic oxidative damage induced by excessive amount of glucose, affecting the nitric oxide synthase/dimethylarginine dimethylaminohydrolase (NOS/DDAH) pathway in streptozotocin-induced type 1 diabetic rats. Our data demonstrated that inducible nitric oxide synthase/gamma-Glutamyl-cysteine ligase (iNOS/GGCL) and DDAH dysregulation may play a key role in high glucose mediated oxidative stress, whereas HO-1 inducers such as CAPE or its more potent derivatives may be useful in diabetes and other stress-induced pathological conditions.


2017 ◽  
Vol 6 (3) ◽  
pp. 204-209 ◽  
Author(s):  
Hassan Ahmadvand ◽  
Gholamreza Shahsavari ◽  
Majid Tavafi ◽  
Shahrokh Bagheri ◽  
Mohamad Reza Moradkhani ◽  
...  

Author(s):  
Paulina Iwan ◽  
Jan Stepniak ◽  
Malgorzata Karbownik-Lewinska

Abstract. Iodine is essential for thyroid hormone synthesis. Under normal iodine supply, calculated physiological iodine concentration in the thyroid is approx. 9 mM. Either potassium iodide (KI) or potassium iodate (KIO3) are used in iodine prophylaxis. KI is confirmed as absolutely safe. KIO3 possesses chemical properties suggesting its potential toxicity. Melatonin (N-acetyl-5-methoxytryptamine) is an effective antioxidant and free radical scavenger. Study aims: to evaluate potential protective effects of melatonin against oxidative damage to membrane lipids (lipid peroxidation, LPO) induced by KI or KIO3 in porcine thyroid. Homogenates of twenty four (24) thyroids were incubated in presence of either KI or KIO3 without/with melatonin (5 mM). As melatonin was not effective against KI-induced LPO, in the next step only KIO3 was used. Homogenates were incubated in presence of KIO3 (200; 100; 50; 25; 20; 15; 10; 7.5; 5.0; 2.5; 1.25 mM) without/with melatonin or 17ß-estradiol. Five experiments were performed with different concentrations of melatonin (5.0; 2.5; 1.25; 1.0; 0.625 mM) and one with 17ß-estradiol (1.0 mM). Malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA) concentration (LPO index) was measured spectrophotometrically. KIO3 increased LPO with the strongest damaging effect (MDA + 4-HDA level: ≈1.28 nmol/mg protein, p < 0.05) revealed at concentrations of around 15 mM, thus corresponding to physiological iodine concentrations in the thyroid. Melatonin reduced LPO (MDA + 4-HDA levels: from ≈0.97 to ≈0,76 and from ≈0,64 to ≈0,49 nmol/mg protein, p < 0.05) induced by KIO3 at concentrations of 10 mM or 7.5 mM. Conclusion: Melatonin can reduce very strong oxidative damage to membrane lipids caused by KIO3 used in doses resulting in physiological iodine concentrations in the thyroid.


2020 ◽  
Vol 20 (28) ◽  
pp. 2634-2647
Author(s):  
Dong-Dong Li ◽  
Pan Yu ◽  
Wei Xiao ◽  
Zhen-Zhong Wang ◽  
Lin-Guo Zhao

: Berberine, as a representative isoquinoline alkaloid, exhibits significant hypolipidemic activity in both animal models and clinical trials. Recently, a large number of studies on the lipid-lowering mechanism of berberine and studies for improving its hypolipidemic activity have been reported, but for the most part, they have been either incomplete or not comprehensive. In addition, there have been a few specific reviews on the lipid-reducing effect of berberine. In this paper, the physicochemical properties, the lipid-lowering mechanism, and studies of the modification of berberine all are discussed to promote the development of berberine as a lipid-lowering agent. Subsequently, this paper provides some insights into the deficiencies of berberine in the study of lipid-lowering drug, and based on the situation, some proposals are put forward.


2019 ◽  
Vol 19 (4) ◽  
pp. 503-510 ◽  
Author(s):  
Mohamed Eddouks ◽  
Farid Khallouki ◽  
Robert W. Owen ◽  
Morad Hebi ◽  
Remy Burcelin

Aims: Arganimide A (4,4-dihydroxy-3,3-imino-di-benzoic acid) is a compound belonging to a family of aminophenolics found in fruit of Argania spinosa. The purpose of this study was to investigate the glucose and lipid lowering activity of Arganimide A (ARG A). Methods: The effect of a single dose and daily oral administration of Arganimide A (ARG A) on blood glucose levels and plasma lipid profile was tested in normal and streptozotocin (STZ) diabetic rats at a dose of 2 mg/kg body weight. Results: Single oral administration of ARG A reduced blood glucose levels from 26.50±0.61 mmol/L to 14.27±0.73 mmol/L (p<0.0001) six hours after administration in STZ diabetic rats. Furthermore, blood glucose levels were decreased from 5.35±0.30 mmol/L to 3.57±0.17 mmol/L (p<0.0001) and from 26.50±0.61 mmol/L to 3.67±0.29 mmol/L (p<0.0001) in normal and STZ diabetic rats, respectively, after seven days of treatment. Moreover, no significant changes in body weight in normal and STZ rats were shown. According to the lipid profile, the plasma triglycerides levels were decreased significantly in diabetic rats after seven days of ARG treatment (p<0.05). Moreover, seven days of ARG A treatment decreased significantly the plasma cholesterol concentrations (p<0.001). Conclusion: ARG A possesses glucose and lipid-lowering activity in diabetic rats and this natural compound may be beneficial in the treatment of diabetes.


Sign in / Sign up

Export Citation Format

Share Document