scholarly journals Analytical and Approximate Solutions of a Novel Nervous Stomach Mathematical Model

2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Yolanda Guerrero Sánchez ◽  
Zulqurnain Sabir ◽  
Hatıra Günerhan ◽  
Haci Mehmet Baskonus

The stomach is usually considered as a hollow muscular sac, which initiates the second segment of digestion. It is the most sophisticated endocrine structure having unique biochemistry, physiology, microbiology, and immunology. The pivotal aim of the present study is to propose the nonlinear mathematical model of the nervous stomach system based on three compartments namely, tension (T), food (F), and medicine (M). The detailed description of each compartment is provided along with the mathematical form and different rates/factors, such as sleep factor, food rate, tension rate, medicine term, and death rate. The solution of the designed model is presented numerically by using the well-known differential transformation technique. The behavior of the obtained solution has been captured with respect to time as well as presentations of the numerical simulations.

Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3013
Author(s):  
Leonid Shaikhet

For the example of one nonlinear mathematical model in food engineering with several equilibria and stochastic perturbations, a simple criterion for determining a stable or unstable equilibrium is reported. The obtained analytical results are illustrated by detailed numerical simulations of solutions of the considered Ito stochastic differential equations. The proposed criterion can be used for a wide class of nonlinear mathematical models in different applications.


2011 ◽  
Vol 19 (02) ◽  
pp. 389-402 ◽  
Author(s):  
A. K. MISRA ◽  
ANUPAMA SHARMA ◽  
VISHAL SINGH

A nonlinear mathematical model with delay to capture the dynamics of effect of awareness programs on the prevalence of any epidemic is proposed and analyzed. It is assumed that pathogens are transmitted via direct contact between susceptibles and infectives. It is assumed further that cumulative density of awareness programs increases at a rate proportional to the number of infectives. It is considered that awareness programs are capable of inducing behavioral changes in susceptibles, which result in the isolation of aware population. The model is analyzed using stability theory of differential equations and numerical simulations. The model analysis shows that, though awareness programs cannot eradicate infection, they help in controlling the prevalence of disease. It is also found that time delay in execution of awareness programs destabilizes the system and periodic solutions may arise through Hopf-bifurcation.


Author(s):  
MANJU AGARWAL ◽  
SAPNA DEVI

In this paper, a nonlinear mathematical model is proposed and analyzed to study the effects of population pressure augmented industrialization on the survival of competing species dependent on resource. It is assumed that the growths of competing species are logistic and carrying capacities increase with increase in the density of resource biomass. Further, it is assumed that the resource biomass too is growing logistically in the environment and its carrying capacity decreases with the increase in densities of competing species and industrialization. The growth rate of population pressure is assumed to be proportional to the densities of competing species. Stabilities of all equilibria and conditions which influence the permanence of the system are carried out using theory of differential equations. Numerical simulations are performed to accomplish our analytical findings. It is shown that the equilibrium density of resource biomass decreases as (i) the growth rate coefficient of population pressure increases (ii) the growth rate coefficient of industrialization due to population pressure increases and (iii) the growth rate coefficient of industrialization due to resource biomass increases. It is found that the competitive outcome alters with increase in the growth rate coefficient of population pressure. Decrease in the equilibrium densities of competing species is also noted with increase in the growth rate coefficient of industrialization due to resource biomass.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1272
Author(s):  
Fengsheng Chien ◽  
Stanford Shateyi

This paper studies the global stability analysis of a mathematical model on Babesiosis transmission dynamics on bovines and ticks populations as proposed by Dang et al. First, the global stability analysis of disease-free equilibrium (DFE) is presented. Furthermore, using the properties of Volterra–Lyapunov matrices, we show that it is possible to prove the global stability of the endemic equilibrium. The property of symmetry in the structure of Volterra–Lyapunov matrices plays an important role in achieving this goal. Furthermore, numerical simulations are used to verify the result presented.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Mostafa M. A. Khater ◽  
Choonkil Park ◽  
Jung Rye Lee ◽  
Mohamed S. Mohamed ◽  
Raghda A. M. Attia

AbstractThe accuracy of analytical obtained solutions of the fractional nonlinear space–time telegraph equation that has been constructed in (Hamed and Khater in J. Math., 2020) is checked through five recent semi-analytical and numerical techniques. Adomian decomposition (AD), El Kalla (EK), cubic B-spline (CBS), extended cubic B-spline (ECBS), and exponential cubic B-spline (ExCBS) schemes are used to explain the matching between analytical and approximate solutions, which shows the accuracy of constructed traveling wave solutions. In 1880, Oliver Heaviside derived the considered model to describe the cutting-edge or voltage of an electrified transmission. The matching between solutions has been explained by plotting them in some different sketches.


2013 ◽  
Vol 760-762 ◽  
pp. 2263-2266
Author(s):  
Kang Yong ◽  
Wei Chen

Beside the residual stresses and axial loads, other factors of pipe like ovality, moment could also bring a significant influence on pipe deformation under external pressure. The Standard of API-5C3 has discussed the influences of deformation caused by yield strength of pipe, pipe diameter and pipe thickness, but the factor of ovality degree is not included. Experiments and numerical simulations show that with the increasing of pipe ovality degree, the anti-deformation capability under external pressure will become lower, and ovality affecting the stability of pipe shape under external pressure is significant. So it could be a path to find out the mechanics relationship between ovality and pipe deformation under external pressure by the methods of numerical simulations and theoretical analysis.


2021 ◽  
Vol 1 (2) ◽  
pp. 12-20
Author(s):  
Najmeh Keshtkar ◽  
Johannes Mersch ◽  
Konrad Katzer ◽  
Felix Lohse ◽  
Lars Natkowski ◽  
...  

This paper presents the identification of thermal and mechanical parameters of shape memory alloys by using the heat transfer equation and a constitutive model. The identified parameters are then used to describe the mathematical model of a fiber-elastomer composite embedded with shape memory alloys. To verify the validity of the obtained equations, numerical simulations of the SMA temperature and composite bending are carried out and compared with the experimental results.


2017 ◽  
Vol 72 (1) ◽  
pp. 59-69 ◽  
Author(s):  
M.M. Fatih Karahan ◽  
Mehmet Pakdemirli

AbstractStrongly nonlinear cubic-quintic Duffing oscillatoris considered. Approximate solutions are derived using the multiple scales Lindstedt Poincare method (MSLP), a relatively new method developed for strongly nonlinear oscillators. The free undamped oscillator is considered first. Approximate analytical solutions of the MSLP are contrasted with the classical multiple scales (MS) method and numerical simulations. It is found that contrary to the classical MS method, the MSLP can provide acceptable solutions for the case of strong nonlinearities. Next, the forced and damped case is treated. Frequency response curves of both the MS and MSLP methods are obtained and contrasted with the numerical solutions. The MSLP method and numerical simulations are in good agreement while there are discrepancies between the MS and numerical solutions.


Sign in / Sign up

Export Citation Format

Share Document