scholarly journals Research on Influence of Water-Cement Ratio on Reinforcement Effect for Permeation Grouting in Sand Layer

2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Zhipeng Li ◽  
Lianzhen Zhang ◽  
Yuntian Chu ◽  
Qingsong Zhang

In order to study permeation grouting reinforcement effect in the sand layer, a set of grouting test device is developed, which consists of a power device, a pressure-bearing slurry tank, and several test frames. Compressive strength, deformation modulus, and permeability coefficient are selected to be the evaluation index of grouting reinforcement effect. Grouting reinforcement effect under different water-cement ratio of cement slurry and curing time were measured. Eventually, under laboratory conditions, fitting formulas have been obtained which describe the quantitative relationship between reinforcement effect of permeation grouting and water-cement ratio and curing time. Results show that water-cement ratio of slurry has obvious effect on grouting reinforcement effect. Mechanical performance and impermeability of the grouted body are negative-correlated with water-cement ratio. There are two different destruction patterns for the grouted body in uniaxial compression process: global destruction pattern at low water-cement ratio and local destruction pattern at high water-cement ratio. If cement slurry at high water-cement ratio is permeated into the sand layer, water bleeding phenomena will appear and lead to inhomogeneous performance of the grouted body, with lower performance in the upper part and higher performance in the lower part of the grouted body.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yan-Xu Guo ◽  
Qing-Song Zhang ◽  
Lian-Zhen Zhang ◽  
Ren-Tai Liu ◽  
Xin Chen ◽  
...  

Permeation grouting is widely used in grouting engineering because of its low grouting pressure and minor disturbance to the stratum. However, influenced by the complex properties of sand layer and slurry, an accurate prediction of the groutability of the sand layer remains to be a hard work. In this paper, the permeability of sand layer is studied based on a self-designed permeation grouting test device, which considers the different sand particle size, relative density of sand layer, slurry water-cement ratio, and clay content. The influencing factors of sand layer groutability are analyzed, and the different parameters that affect the grouting of sand layer are evaluated, thus proposing a new approach to predict the groutability of sand layer. Results show that the sand particle size and slurry water-cement ratio are positively related to the groutability of sand layer, and the relative density and clay content of sand layer are negatively correlated with the groutability of sand layer. The proposed alternative empirical formula to estimate the groutability of sand layer will help predict the groutability of sand layer with a higher degree of accuracy, which can provide a certain reference for engineering.


2021 ◽  
Vol 11 (21) ◽  
pp. 10491
Author(s):  
Jianxiu Wang ◽  
Ansheng Cao ◽  
Zhao Wu ◽  
Huanran Wang ◽  
Xiaotian Liu ◽  
...  

For an ultra-shallow buried double-arch tunnel with a large cross-section, the arching effect is difficult to form in surrounding rock, and grouting method is often adopted to reinforce the surrounding rock. Hence, examining the grouting reinforcement parameters is of great significance for potential failure and collapse prevention. The land part of Haicang undersea tunnel was selected as a case study; laboratory experiments, theoretical analysis, and numerical simulation were performed to determine the grouting solid strength and grouting reinforcement parameters. The effects of different water–cement ratios on slurry fluidity, setting time, bleeding rate, and sample strength were studied by laboratory experiments. A method was proposed to determine the shear strength parameters of grouted surrounding rock through the grout water–cement ratio and the unconfined compressive strength of the rock mass. Numerical simulations were performed for grouting reinforcement layer thickness and the water–cement ratios. The deformation and stability law of tunnel surrounding rock and its influence on surrounding underground pipelines were obtained considering the spatial effect of tunnel excavation and grouting reinforcement. The reasonable selection range of grouting reinforcement parameters was proposed. The initial setting time and bleeding rate of cement slurry increased with the increasing water–cement ratio, while the viscosity of cement slurry and sample strength decreased with the increasing water–cement ratio. The shear strength parameters of grouted surrounding rock were determined by the water–cement ratio of grout and unconfined compressive strength of rock mass before grouting. When the thickness of grouting reinforcement layer h = 1.5 m and the water–cement ratio of grout was suggested η = 0.85, the surface settlement, the deformation of the vault, and the deformation of the nearby pipeline all met the design. Moreover, the construction requirements were more economical. Research results can provide a reference for the selection of grouting reinforcement parameters for similar projects.


Author(s):  
Mustaque Hossain ◽  
James Koelliker ◽  
Hisham Ibrahim ◽  
John Wojakowski

The water-cement ratio of fresh concrete is recognized as the one factor that affects the strength and durability of an adequately compacted concrete mix. Although water-cement ratio is the predominant factor affecting strength of hardened concrete, currently no widely used, reliable method is available for measuring water-cement ratio in the field. A prototype device has been developed to measure the water-cement ratio of a plastic concrete mix. The method is based on the measurement of turbidity of water-cement slurry separated out of a concrete mixture by pressure sieving. Consistent results were obtained for air-entrained and non-air-entrained concrete. Statistical analyses of the test results have shown that this meter can measure the water-cement ratio of fresh concrete with an accuracy of ±0.01 on the water-cement ratio scale for a single test at a 90 percent confidence interval. The equipment will cost less than $10,000. If the method works as well in the field as it does in the laboratory, accurate determination of water-cement ratio could dramatically improve the ability of the concrete industry to ensure the quality of concrete construction.


Author(s):  
P. Zhang ◽  
T. J. Zhao ◽  
L. S. Zhang ◽  
F. H. Wittmann ◽  
E. Lehmann ◽  
...  

It has been experienced that service life of reinforced concrete structures is often limited due to lack of durability of cement-based materials. One major reason for this durability problem is the penetration of water and compounds dissolved in water into concrete. Therefore, there is an urgent need to study water penetration into concrete in order to better understand deterioration mechanisms. Neutron radiography provides an advanced non-destructive technique with high spatial resolution. In this contribution, neutron radiography was successfully utilized to study the process of water absorption of two types of concrete with different water-cement ratios namely 0.4 and 0.6. It is shown that it is possible to visualize migration of water into concrete and to quantify the time-dependent moisture distribution with accurately and with high spatial resolution by means of neutron radiography. In concrete with high water-cement ratio, water penetrates much quicker than in concrete with lower water cement ratio. Water penetration depth obtained from neutron radiography is in good agreement with corresponding values obtained from capillary suction tests. Experimental results obtained by means of neutron radiography on water penetration into concrete will be presented and discussed in this contribution. Results will provide us with a solid basis for a better understanding of deteriorating processes in concrete and other cement-based materials. These results may be considered to be a first step to improve durability of concrete.


2013 ◽  
Vol 438-439 ◽  
pp. 197-201
Author(s):  
Xian Hua Yao ◽  
Peng Li ◽  
Jun Feng Guan

Based on the generalization and analysis of laboratory experimental results on mix ratio, the effects of various factors such as cement content, water-cement ratio, curing time, curing conditions and types of cement on the mechanical properties of unconfined compressive strength of cement soil are presented. Results show that the unconfined compressive strength of cement soil increases with the growing curing time, and it is greatly affected by the cement content, water-cement ratio, cement types and curing time, while the effect of curing conditions is weak with a cement content of more than 10%. Moreover, the stress-strain of the cement soil responds with the cement content and curing time, increasing curing time and cement content makes the cement soil to be harder and brittle, and leads to a larger Young's modulus.


2013 ◽  
Vol 838-841 ◽  
pp. 1801-1805 ◽  
Author(s):  
Li Juan Kong ◽  
Qing Chao Meng ◽  
Yuan Bo Du

Influence of aggregate types on the impermeability and frost-resistance of concrete with different water/cement ratios were investigated, as well as the pore structure and hydrates of the ITZ. The results show that, concrete prepared with a high water/cement ratio and using granite aggregate, presents the highest values of chloride diffusion coefficient and the lowest numbers of freeze-thaw cycles. Whereas concrete prepared with a low water/cement ratio and using limestone aggregate, obtains the similar durability results. The limestone aggregate with a rough surface and higher water absorption, has a tight bonding with the cement paste. However, the granite and basalt aggregate that formed by magma eruption, have higher activity. The XRD results demonstrate that more clinkers participate in the hydration of cement, therefore, resulting in a denser ITZ. In order to improve the concrete durability, the basalt aggregate both with higher activity and rough surface is consider optimal.


Crystals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 10
Author(s):  
Zhenkun Hou ◽  
Mengxiong Tang ◽  
Shihua Liang ◽  
Yi Zhu

The physical and mechanical properties of grouting materials greatly affect the friction resistance and the bearing performance of a non-soil-squeezing PHC pipe pile. Orthogonal tests for four factors at five levels were carried out to optimize the proportion of the water–cement mixture by using Portland cement as a raw material and a water-reducing agent, expansion agent and early-strength agent as additives. The following conclusions were obtained: (1) Both the water–cement ratio and the dosage of water-reducing agent are positively correlated with the fluidity of the water–cement mixture and have the greatest influence on the fluidity, followed by the expansion agent and early-strength agent. The saturation point of the water-reducing agent is 1.5%. (2) The strength of the grouting body decreases linearly with the increase of the water–cement ratio, and the dosage of the water-reducing agent has no obvious effect on the strength. As the dosage of expansion agent increases, the strength of the grouting body decreases rapidly. The expansion agent mainly plays a key role in the middle and late stages of the hardening process of the slurry. Early-strength agents have a greater impact on the early strength, but less on the later strength. When the slurry is solidified for 3 h, the early-strength agent has the greatest impact on the strength with an optimal dosage of 5%. (3) The volume of the grouting body has an inverse relationship with the water–cement ratio, and the optimal amount of expansion agent is 12%. The incorporation of an expansion agent makes the volume increase of the grouting body exceed the volume shrinkage ratio caused by the hardening of the grouting body with a curing time of more than 3 days, ensuring a slight increase in the volume of the grouting body. After 3 days, even though the effect of the expansion agent is gradually weakened, it can still ensure that the volume of the grouting body does not shrink. With the increase of the amount of water-reducing agent, the volume of the grouting body gradually decreases. When the amount of water-reducing agent exceeds 1.5%, the volume of the grouting body no longer decreases. (4) The early-strength agent has almost no effect on the volume of the grouting body. When the curing time is 3 h, the water–cement ratio has the greatest influence on the volume of the grouting body, followed by the water-reducing agent, and, finally, the expansion agent. After 3 h, the water–cement ratio still has the greatest influence, and the influence of the expansion agent gradually exceeds that of the water-reducing agent. The water-reducing agent mainly affects the volume of the grouting body in the water separation stage, and the expansion agent mainly plays a role in the middle and late stages of the slurry solidification. After optimized ratio analysis, the fluidity of the water–cement mixture can be improved, the volume shrinkage ratio rate can be lowered and the early strength can be increased.


2014 ◽  
Vol 529 ◽  
pp. 112-116
Author(s):  
Yong Ning Mi ◽  
Xin Shao ◽  
Jin Ting Zhao ◽  
Zhen Guo Wang ◽  
Chuan Yue

The superfine sand concrete application in our country has a history of more than half a century. Although we have a certain understanding about the superfine sand concrete, there are few studies of superfine sand concrete interface. This experiment made up different water-cement ratio superfine sand concrete, and used scanning electron microscope to observe the secondary interface structure, the product of interface C-S-H gel had been carried on by the energy spectrum analysis. Results show that the secondary interface microstructure of the low water-cement ratio concrete is denser than high water cement ratio, and also have certain effects on macroscopic compressive strength; C-S-H gel calcium silicon ratio in the secondary interface is between 1.5 and 2.1.


Sign in / Sign up

Export Citation Format

Share Document