scholarly journals Correlation between FAK and EGF-Induced EMT in Colorectal Cancer Cells

2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Kun Huang ◽  
Ningning Gao ◽  
Donglin Bian ◽  
Qixi Zhai ◽  
Puxu Yang ◽  
...  

Epithelial-mesenchymal transition (EMT) plays an important role in the invasion and metastasis of colorectal cancer, which is mediated by FAK and EGF. However, whether FAK participates in EMT in colorectal cancer cells through the EGF/EGFR signaling pathway remains unknown. The aim of this study was to investigate the effector mechanisms of FAK in the process of EGF-induced EMT in colorectal cancer cells and to determine whether miR-217 is involved in this process. Caco-2 cancer cells were routinely cultured with and without treatment with 100 ng/mL EGF, and changes in cell morphology were observed using an inverted microscope. In addition, a transwell assay was used to detect cell migration under the condition of EGF treatment. The expression of FAK, pFAK, E-cadherin, vimentin, and β actin was assessed by western blotting, and the expression of miR-217 was assessed using real-time PCR. We found that EGF induced EMT in colorectal cancer cells and enhanced cell migration and invasion ability. Moreover, FAK was involved in the EGF-induced EMT of colorectal cancer cells. EGF upregulated the expression of E-cadherin in colorectal cancer cells by activating FAK, and miR-217 was found to participate in EGF-induced EMT in colorectal cancer cells. Our findings indicate that EGF induces EMT in colorectal cancer cells by activating FAK, and miR-217 is involved in the EGF/FAK/E-cadherin signaling pathway.

Oncogene ◽  
2015 ◽  
Vol 35 (24) ◽  
pp. 3151-3162 ◽  
Author(s):  
Q Zhang ◽  
T Wei ◽  
K Shim ◽  
K Wright ◽  
K Xu ◽  
...  

Abstract Sprouty (SPRY) appears to act as a tumor suppressor in cancer, whereas we demonstrated that SPRY2 functions as a putative oncogene in colorectal cancer (CRC) (Oncogene, 2010, 29: 5241–5253). We investigated the mechanisms by which SPRY regulates epithelial–mesenchymal transition (EMT) in CRC. SPRY1 and SPRY2 mRNA transcripts were significantly upregulated in human CRC. Suppression of SPRY2 repressed AKT2 and EMT-inducing transcription factors and significantly increased E-cadherin expression. Concurrent downregulation of SPRY1 and SPRY2 also increased E-cadherin and suppressed mesenchymal markers in colon cancer cells. An inverse expression pattern between AKT2 and E-cadherin was established in a human CRC tissue microarray. SPRY2 negatively regulated miR-194-5p that interacts with AKT2 3′ untranslated region. Mir-194 mimics increased E-cadherin expression and suppressed cancer cell migration and invasion. By confocal microscopy, we demonstrated redistribution of E-cadherin to plasma membrane in colon cancer cells transfected with miR-194. Spry1 −/− and Spry2 −/− double mutant mouse embryonic fibroblasts exhibited decreased cell migration while acquiring several epithelial markers. In CRC, SPRY drive EMT and may serve as a biomarker of poor prognosis.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Songwen Ju ◽  
Feng Wang ◽  
Yirong Wang ◽  
Songguang Ju

AbstractHypoxic stress plays a pivotal role in cancer progression; however, how hypoxia drives tumors to become more aggressive or metastatic and adaptive to adverse environmental stress is still poorly understood. In this study, we revealed that CSN8 might be a key regulatory switch controlling hypoxia-induced malignant tumor progression. We demonstrated that the expression of CSN8 increased significantly in colorectal cancerous tissues, which was correlated with lymph node metastasis and predicted poor patient survival. CSN8 overexpression induces the epithelial-mesenchymal transition (EMT) process in colorectal cancer cells, increasing migration and invasion. CSN8 overexpression arrested cell proliferation, upregulated key dormancy marker (NR2F1, DEC2, p27) and hypoxia response genes (HIF-1α, GLUT1), and dramatically enhanced survival under hypoxia, serum deprivation, or chemo-drug 5-fluorouracil treatment conditions. In particular, silenced CSN8 blocks the EMT and dormancy processes induced by the hypoxia of 1% O2 in vitro and undermines the adaptive capacity of colorectal cancer cells in vivo. The further study showed that CSN8 regulated EMT and dormancy partly by activating the HIF-1α signaling pathway, which increased HIF-1α mRNA expression by activating NF-κB and stabilized the HIF-1α protein via HIF-1α de-ubiquitination. Taken together, CSN8 endows primary colorectal cancer cells with highly aggressive/metastatic and adaptive capacities through regulating both EMT and dormancy induced by hypoxia. CSN8 could serve as a novel prognostic biomarker for colorectal cancer and would be an ideal target of disseminated dormant cell elimination and tumor metastasis, recurrence, and chemoresistance prevention.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e15107-e15107
Author(s):  
Wan He ◽  
Han Wu ◽  
Dongcheng Liu ◽  
Wenwen Li ◽  
Ruilian Xu ◽  
...  

e15107 Background: Our previous studies revealed the increased expression of Jagged 2 (JAG2) in most intestinal cancer tissues. In colon cancer cell lines, JAG2 involved in the regulation of migration and invasion without affecting cell proliferation. This study further explored the mechanisms of how JAG2 promotes migration and invasion of colorectal cancer cells. Methods: We analyzed the expression of JAG2 mRNA and protein in normal human colon tissue cells and colorectal cancer cells. The promotive role of JAG2 in migration and invasion was tested by JAG2 siRNA and JAG2 overexpression in various colon cancer cell lines. To understand the mechanisms, we first treated HT29 cells with LY2157299, a TGF-β signaling pathway inhibitor, and Slug siRNA, to identify the cross-talk between JAG2 and EMT pathway. In addition, co-expression status of JAG2 and TGF-β-induced epithelial-mesenchymal transition (EMT) markers was analyzed. Finally, by using siRNA and proteomics technology, co-expressed proteins of JAG2 in colorectal cancer cells were identified. Results: JAG2 was abnormally expressed in colorectal cancer tissues and directly related with clinical stages. Similar to the findings in human tissues, the expression of both JAG2 mRNA and protein was significantly increased in the colorectal cancer cell lines compared with that of normal colorectal cell line CCD18-Co. Interestingly, the promotion of JAG2 in migration and invasion was independent of EMT pathway. Furthermore, we found that the expression of JAG2 was correlated with PRAF2 (PRA1 Domain Family Member 2), a protein involved in the formation of exosome-like vesicles. In the presence of PRAF2, JAG2-rich exosome promoted migration and invasion. JAG2 might regulate the migration and invasion of colon cell through PRAF2. Conclusions: This is the evidence supporting the biological function of JAG2 in migration and invasion through non-EMT-dependent pathways and also the first exploration of the role of PRAF2 in colorectal cancer cells. These findings provide the theoretical basis for potential targeted therapy against JAG2/PRAF2.


Sign in / Sign up

Export Citation Format

Share Document