scholarly journals Horizontal-Vertical-Rocking Coupled Response Analysis of Vertical Seismic Isolated Structure under Near-Fault Earthquakes

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Dewen Liu ◽  
Yafei Zhang ◽  
Sitong Fang ◽  
Yang Liu

For vertical isolated structures with excessive vertical eccentricity for mass and vertical stiffness, horizontal-vertical-rocking response needs to be better understood for vertical isolated structures located in near-fault areas, where long-period velocity pulse can be produced. In this study, a seismic isolation system including quasizero stiffness (QZS) and vertical damper (VD) is used to control near-fault (NF) vertical earthquakes. The responses of horizontal-vertical-rocking coupling base-isolated structure including quasizero stiffness (QZS) and vertical damper (VD) subjected to NF horizontal and vertical ground motions are investigated. Nonlinear dynamic analyses are conducted to study the effects of essential parameters such as isolation system eccentricity, static equilibrium position, vertical isolation period, and vertical damping ratio on seismic responses of vertical isolated structure. It is found that increasing vertical period and damping ratio causes the vertical isolated structures to behave well in reducing rocking responses of structure. The effect of horizontal-vertical-rocking coupling on vertical seismic isolation efficiency is insignificant. The vertical seismic isolation remains effective as compared to the system supported on rubber bearings. The vertical damping can significantly control the vertical displacement and rocking moment.

2014 ◽  
Vol 638-640 ◽  
pp. 1952-1955
Author(s):  
Q. Rong ◽  
Yan Sheng ◽  
Shi Xin Liu

Series isolation system consists of rubber isolation bearings and composite disk springs, determination method of vertical stiffness and vertical damping of isolation layer is given. Entering the near-fault vertical seismic waves, the affect of isolation layer parameters and earthquake intensity on the isolation effect is studied. Studies have shown that the vertical isolation effect increases with the increase of vertical damping ratio. When the damping ratio reaches a certain value, the isolated effect leveles off. When calculating model is adopted as the hierarchical model, vertical isolation effect has nothing to do with the increases of earthquake intensity.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Dewen Liu ◽  
Yang Liu ◽  
Dongfa Sheng ◽  
Wenyuan Liao

Seismic isolation devices are usually designed to protect structures from the strong horizontal component of earthquake ground shaking. However, the effect of near-fault (NF) vertical ground motions on seismic responses of buildings has become an important consideration due to the observed building damage caused by vertical excitation. As the structure needs to maintain its load bearing capacity, using the horizontal isolation strategy in vertical seismic isolation will lead to the problem of larger static displacement. In particular, the bearings may generate large deformation responses of isolators for NF vertical ground motions. A seismic isolation system including quasi-zero stiffness (QZS) and vertical damper (VD) is used to control NF vertical earthquakes. The characteristics of vertical seismic isolated structures incorporating QZS and VD are presented. The formula for the maximum bearing capacity of QZS isolation considering the stiffness of vertical spring components is obtained by theoretical derivation. From the static analysis, it is found that the static capacity of the QZS isolation system with vertical seismic isolation components increases when the configurative parameter reduces. Seismic response analyses of the seismic isolated structure model with QZS and VD subjected to NF vertical earthquakes are conducted. The results show that seismic responses of the structure can be controlled by setting the appropriate static equilibrium position, vertical isolation period, and vertical damping ratio. Adding a damping ratio is effective in controlling the vertical large deformation of the isolator.


2016 ◽  
Vol 845 ◽  
pp. 240-245
Author(s):  
Sima Rezaei ◽  
Gholamreza Ghodrati Amiri

The isolating system absorbs part of the earthquake energy before transferring it to the structure, by shifting the natural period of the isolated structure. This period shift results in a reduction in the inertial forces. It is clear that the effects of near-fault (NF) ground motions with large velocity pulses can bring the seismic isolation devices to critical working conditions. In this study, two three-dimensional RC buildings with the heights of 9.0m and 21.0m which are supported by Triple Friction Pendulum Bearing (TFPB) isolators are idealized. Various TFPB configurations are selected for isolation systems. There are also viscous dampers to limit the excess deformation of isolators. Nonlinear time history analyses were performed by using OpenSees to study the influence of supplemental dampers on structural responses such as isolator displacements and maximum drifts under ten near-fault ground motion records. The results show noticeable reduction in isolator displacement when using dampers. However, maximum drift rises considerablely. Moreover by increasing the period range or reducing the damping ratio of isolation system, maximum driftreduces but the displacement of isolator increases.


2020 ◽  
Vol 11 (1) ◽  
pp. 82
Author(s):  
Fabio Mazza ◽  
Mirko Mazza

Elastomeric bearings are commonly used in base-isolation systems to protect the structures from earthquake damages. Their design is usually developed by using nonlinear models where only the effects of shear and compressive loads are considered, but uncertainties still remain about consequences of the tensile loads produced by severe earthquakes like the near-fault ones. The present work aims to highlight the relapses of tension on the response of bearings and superstructure. To this end, three-, seven- and ten-storey r.c. framed buildings are designed in line with the current Italian seismic code, with a base-isolation system constituted of High-Damping-Rubber Bearings (HDRBs) designed for three values of the ratio between the vertical and horizontal stiffnesses. Experimental and analytical results available in literature are used to propose a unified nonlinear model of the HDRBs, including cavitation and post-cavitation of the elastomer. Nonlinear incremental dynamic analyses of the test structures are carried out using a homemade computer code, where other models of HDRBs considering only some nonlinear phenomena are implemented. Near-fault earthquakes with comparable horizontal and vertical components, prevailing horizontal component and prevailing vertical component are considered as seismic input. Numerical results highlight that a precautionary estimation of response parameters of the HDRBs is attained referring to the proposed model, while its effects on the nonlinear response of the superstructure are less conservative.


2017 ◽  
Vol 21 (5) ◽  
pp. 675-693 ◽  
Author(s):  
Aruna Rawat ◽  
Naseef Ummer ◽  
Vasant Matsagar

Rolling base isolation system provides effective isolation to the structures from seismic base excitations by virtue of its low frictional resistance. Herein, dynamic analysis of flexible-shear type multi-storey building mounted on orthogonally placed elliptical rolling rod base isolation systems subjected to bi-directional components of near-fault earthquake ground motions is presented. The orthogonally placed rods would make it possible to resist the earthquake forces induced in the structure in both the horizontal directions. The curved surface of these elliptical rods has a self-restoring capability due to which the magnitude of peak isolator displacement and residual displacement is reduced. The roughness of the tempered curved surface of the rollers dissipates energy in motion due to frictional damping. The seismic performance of the multi-storey building mounted on the elliptical rolling rod base isolation system is compared with that mounted on the sliding pure-friction and cylindrical rolling rod systems. Parametric studies are conducted to examine the behavior of the building for different superstructure flexibilities, eccentricities of the elliptical rod, and coefficients of friction. It is concluded that the elliptical rolling rod base isolation system is effective in mitigation of damaging effects of the near-fault earthquake ground motions in the multi-storey buildings. Even under the near-fault earthquake ground motions, the base-isolated building mounted on the elliptical rolling rods shows considerable reduction in seismic response. The isolator displacement with the elliptical rolling rod base isolation system is less in comparison to the pure-friction and cylindrical rolling rod systems.


2016 ◽  
Vol 10 (7) ◽  
pp. 10
Author(s):  
Musa Mazji Till Abadi ◽  
Behnam Adhami

<p>In this study, the function and application of seismic isolation system through lead rubber bearing isolator (LRB) in near-fault earthquakes are compared with fixed-base structures. As a result of their high frequency content, near-fault earthquakes impose huge energy on structures and cause severe damages. One of the appropriate solutions for this issue is the use of LRB which decreases the amount of imposed energy on structures. To improve the function of isolated structures under the near-fault earthquakes, isolators are designed in a way to tolerate the vertical component of earthquakes. To this purpose, we limit the displacements due to the horizontal movements of isolator through Gap spring which acts as a retaining wall and prevent shocks to other buildings. Moreover, this approach decreases the vertical movements of isolators and indirectly improves their behavior. In the current study, three buildings with four, eight, and 12 floors (with and without gap spring) were included. Isolators were manually designed in accordance with AASHTO-LRB regulations and the behaviors of both isolators and buildings are considered non-linear. Then we analyzed and compared the amount of energy, displacement, and acceleration of structure at the center of roof. The results indicated a significant decrease in the results of base shear, the acceleration of roof center, floors drift and energy imposed on the structure in the isolated system in comparison with the fixed-base structure.</p>


2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Dahai Zhao ◽  
Yongxing Li

This paper proposes a new fuzzy logic controller, which is designed for seismic protection of base-isolated structures utilizing piezoelectric friction damper against near-fault earthquakes for different ground sites. According to the elastic design spectrum that Eurocode 8 recommends, one 5% damped elastic design spectrum for Chi-Chi earthquake is proposed to generate artificial earthquakes of different ground sites. The proposed controller employs a hierarchic fuzzy control algorithm, in which a supervisory fuzzy controller governs a sublevel fuzzy controller by altering its input normalization factors according to current level of ground motion. In order to simultaneously reduce the base displacement and superstructure responses of the base-isolated structure during seismic excitations, genetic algorithm is employed to optimize the supervisory fuzzy controller and the preload of piezoelectric friction damper. The efficiency of the proposed controller is also compared with passive controller and a linear quadratic Gauss optimal controller. Numerical results show that the proposed fuzzy logic controller has favorable performance in mitigating the responses of the base-isolated structure.


Sign in / Sign up

Export Citation Format

Share Document