scholarly journals Coupled Orbit-Attitude Dynamics of Tethered-SPS

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yi Wei ◽  
Zhuyan Shao ◽  
Xingqiu Zhang ◽  
Jiankang Liu

In this paper, a dynamic model for long-term on-orbit operation of the tethered solar power satellite (Tethered-SPS) is established. Because the Tethered-SPS is a super-large and super-flexible structure, the coupling among the orbit, attitude, and structure vibration of the system should be considered in comparison with the traditional spacecraft dynamic models. Based on the absolute nodal coordinate formulation (ANCF), the dynamic equation of the Tethered-SPS is established by Hamiltonian variational principle, and the dual equations of the Hamiltonian system are established by introducing generalized momentum through Legendre transformation. The symplectic Runge–Kutta method is used for numerical simulation, and the validation of the modeling method is verified by a numerical example. The effects of orbital altitude, initial attitude angle, length of solar panel, and orbital eccentricity on the orbit and attitude of the Tethered-SPS are analyzed. The numerical simulation results show that the effect of orbital altitude and length of solar panel on the orbital error of midpoint of beam is small. However, the initial attitude angle has a significant effect on the orbital error of midpoint of solar panel. The effect of the length of solar panel on the attitude angle of the system is not significant, but orbital altitude, orbital eccentricity, and initial attitude angle of the system severely affect the attitude angle of the system. Then, the stability of the system is affected.

1998 ◽  
Vol 4 (1) ◽  
pp. 73-98 ◽  
Author(s):  
N. U. Ahmed ◽  
H. Harbi

In this paper we consider a few dynamic models of suspension bridge described by partial differential equations with linear and nonlinear couplings. We study analytically the stability properties of these models and the relative effectiveness of aerodynamic and structural damping. Increasing aerodynamic or structural damping indefinitely does not necessarily increase the decay rate indefinitely. In view of possible disastrous effects of high wind, structural damping is preferable to aerodynamic (viscous) damping. These results are illustrated by numerical simulation.


2008 ◽  
Vol 22 (05) ◽  
pp. 553-560 ◽  
Author(s):  
WU-JIE YUAN ◽  
XIAO-SHU LUO ◽  
PIN-QUN JIANG ◽  
BING-HONG WANG ◽  
JIN-QING FANG

When being constructed, complex dynamical networks can lose stability in the sense of Lyapunov (i. s. L.) due to positive feedback. Thus, there is much important worthiness in the theory and applications of complex dynamical networks to study the stability. In this paper, according to dissipative system criteria, we give the stability condition in general complex dynamical networks, especially, in NW small-world and BA scale-free networks. The results of theoretical analysis and numerical simulation show that the stability i. s. L. depends on the maximal connectivity of the network. Finally, we show a numerical example to verify our theoretical results.


1994 ◽  
Vol 116 (4) ◽  
pp. 550-555 ◽  
Author(s):  
M. Gremaud ◽  
W. Cheng ◽  
I. Finnie ◽  
M. B. Prime

Introducing a thin cut from the surface of a part containing residual stresses produces a change in strain on the surface. When the strains are measured as a function of the depth of the cut, residual stresses near the surface can be estimated using the compliance method. In previous work, the unknown residual stress field was represented by a series of continuous polynomials. The present paper shows that for stress states with steep gradients, superior predictions are obtained by using “overlapping piecewise functions” to represent the stresses. The stability of the method under the influence of random errors and a zero shift is demonstrated by numerical simulation.


2013 ◽  
Vol 554-557 ◽  
pp. 630-637 ◽  
Author(s):  
Martin Grüner ◽  
Marion Merklein

Aluminium alloys show a great potential for lightweight constructions due to their high strength and low density but the production of this material is very energy consuming. Also the recycling of aluminium alloys, e.g. chips from the milling process, shows different challenges. Beside contamination by cooling lubricant and oxidation of the surface of the chips the melting and rolling process for new semi finish products needs a high amount of energy. TEKKAYA shows a new approach for recycling of aluminium alloy chips by an extrusion process at elevated temperatures producing different kinds of profiles. A new idea is the production of components directly out of chips using severe plastic deformation for joining of the chips similar to the accumulative roll bonding process in sheet metal forming. In a first approach aluminium alloy chips out of a milling process were uniaxial compressed with different loads inside an axisymmetric tool installed in a universal testing machine. The compressed chip disks subsequently were tested with two experiments to gain information on their stability. First experiment is a disk compression test with the disk standing on its cylindrical surface, giving information on the stability perpendicular to the compression direction. Second experiment is a stacked disk compression test with three disks to investigate the stability parallel to compression direction. During all three tests force and displacement values are recorded by the universal testing machine. These data are also processed to calculate or identify input parameters for the numerical investigations. For numerical simulation ABAQUS in conjunction with the Drucker-Prager-Cap material model, which is often used for sintering processes, seems to be a good choice. By numerical simulation of the experiments and comparison with the experiments input parameters for the material model can be identified showing good accordance. This material model will be used in future numerical investigations of an extrusion process to identify tool geometries leading to high strains inside the material and by this to an increased stability of the parts.


2015 ◽  
Vol 777 ◽  
pp. 8-12 ◽  
Author(s):  
Lin Zhen Cai ◽  
Cheng Liang Zhang

HuJiaDi tunnel construction of Dai Gong highway is troublesome, the surrounding-rock mass give priority to full to strong weathering basalt, surrounding rock integrity is poor, weak self-stability of surrounding rock, and tunnel is prone to collapse. In order to reduce disturbance, taking advantage of the ability of rock mass, excavation adopt the method of "more steps, short footage and strong support". The excavation method using three steps excavation, The excavation footage is about 1.2 ~ 1.5 m; The surrounding rock bolting system still produce a large deformation after completion of the first support construction, it shows that the adopted support intensity cannot guarantee the stability of the tunnel engineering. Using ABAQUS to simulate tunnel excavation support, optimizing the support parameters of the tunnel, conducting comparative analysis with Monitoring and Measuring and numerical simulation results, it shows that the displacement - time curves have a certain consistency in numerical simulation of ABAQUS and Monitoring and Measuring.


2011 ◽  
Vol 422 ◽  
pp. 688-692
Author(s):  
Xiao Hei He ◽  
Geng You Han ◽  
Rui Hua Xiao

Abstract:Since the Wenchuan earthquake happened, the slope stability had been paid much more attention. The safety factor is an important parameter that can be used to evaluate the stability of slope. The pseudo-static method that based on limit equilibrium and the method of numerical simulation can calculate the safety factor accurately, but the velocity that gets the result is slow. If we can establish the relationship between safety factor and some other parameters, then we can calculate the safety factor by using the relationship more quickly. This paper establishes much relationship, such as the relationship between the rock mechanics parameters and the average danymic safety factor, the relationship between the rock mechanics parameters and the ratio of average danymic safety factor to static safety factor, the relationship between the rock mechanics parameters and the average earthquake acceleration coefficient, the relationship between the average earthquake acceleration coefficient and the ratio of average danymic safety factor to static safety factor, and the relationship between the earthquake acceleration coefficient and the ratio of danymic safety factor to static safety factor on the condition of different rock mass.


2021 ◽  
Author(s):  
James Kent

<p>GungHo is the mixed finite-element dynamical core under development by the Met Office. A key component of the dynamical core is the transport scheme, which advects density, temperature, moisture, and the winds, throughout the atmosphere. Transport in GungHo is performed by finite-volume methods, to ensure conservation of certain quantaties. There are a range of different finite-volume schemes being considered for transport, including the Runge-Kutta/method-of-lines and COSMIC/Lin-Rood schemes. Additional horizontal/vertical splitting approaches are also under consideration, to improve the stability aspects of the model. Here we discuss these transport options and present results from the GungHo framework, featuring both prescribed velocity advection tests and full dry dynamical core tests. </p>


2021 ◽  
Vol 31 (02) ◽  
pp. 2150018
Author(s):  
Wentao Huang ◽  
Chengcheng Cao ◽  
Dongping He

In this article, the complex dynamic behavior of a nonlinear aeroelastic airfoil model with cubic nonlinear pitching stiffness is investigated by applying a theoretical method and numerical simulation method. First, through calculating the Jacobian of the nonlinear system at equilibrium, we obtain necessary and sufficient conditions when this system has two classes of degenerated equilibria. They are described as: (1) one pair of purely imaginary roots and one pair of conjugate complex roots with negative real parts; (2) two pairs of purely imaginary roots under nonresonant conditions. Then, with the aid of center manifold and normal form theories, we not only derive the stability conditions of the initial and nonzero equilibria, but also get the explicit expressions of the critical bifurcation lines resulting in static bifurcation and Hopf bifurcation. Specifically, quasi-periodic motions on 2D and 3D tori are found in the neighborhoods of the initial and nonzero equilibria under certain parameter conditions. Finally, the numerical simulations performed by the fourth-order Runge–Kutta method provide a good agreement with the results of theoretical analysis.


Sign in / Sign up

Export Citation Format

Share Document