scholarly journals Long Noncoding RNA EZR-AS1 Regulates the Proliferation, Migration, and Apoptosis of Human Venous Endothelial Cells via SMYD3

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Ganhua You ◽  
Xiangshu Long ◽  
Fang Song ◽  
Jing Huang ◽  
Maobo Tian ◽  
...  

Numerous studies have shown that long noncoding RNAs (lncRNAs) play essential roles in the development and progression of human cardiovascular diseases. However, whether lncRNA ezrin antisense RNA 1 (EZR-AS1) is associated with the progression of coronary heart disease (CHD) remains unclear. Accordingly, the aim of the present study was to evaluate the role of lncRNA EZR-AS1 in patients with CHD and in human venous endothelial cells (HUVECs). The findings revealed that lncRNA EZR-AS1 was highly expressed in the peripheral blood of patients with CHD. In vitro experiments showed that the overexpression of EZR-AS1 could enhance proliferation, migration, and apoptosis by upregulating the expression of EZR in HUVECs; downregulation of lncRNA EZR-AS1 resulted in the opposite effect. lncRNA EZR-AS1 was also found to regulate SET and MYND domain-containing protein 3 (SMYD3), a histone H3 lysine 4-specific methyltransferase, which subsequently mediated EZR transcription. Collectively, these results demonstrate that lncRNA EZR-AS1 plays an important role in HUVECs function via SMYD3 signaling.

2013 ◽  
Vol 94 (3) ◽  
pp. 355-361
Author(s):  
V N Oslopov ◽  
Y V Oslopova ◽  
D V Borisov

There are numerous pathophysiological mechanisms unequally responsible for the cardiac syndrome X development. The most important is endothelium and smooth muscle cells dysfunction that can intensify vasoconstriction and depress both endothelium-dependant and endothelium-independent vasodilatation, finally leading to coronary micro vascular dysfunction as the basis of the cardiac syndrome X pathogenesis. Together with other possible mechanisms of pathogenesis, studying the importance of increased cell membrane Na+-Li+-countertransport activity seems promising. If was found that a significant number of patients with cardiac syndrome X have increased Na+-Li+-countertransport activity, which is an in vitro marker of Na+-H+-antiporter. Therefore, it is important to measure Na+-Li+-countertransport speed in patients with coronary heart disease, because its high levels increases the chance for cardiac syndrome X, which is a coronary heart disease with no anatomic signs of coronary arteries involvement.


2019 ◽  
Vol 317 (6) ◽  
pp. E1055-E1062
Author(s):  
Dandan Huang ◽  
Xiaoxiang Mao ◽  
Jiangtong Peng ◽  
Min Cheng ◽  
Tao Bai ◽  
...  

Zinc-α2-glycoprotein (AZGP1) is a newly identified adipokine that is associated with lipid metabolism and vascular fibrosis. Although adipokines contribute to lipid dysfunction and its related diseases, including stroke and coronary heart disease (CHD), the role of AZGP1 remains unclear. In this study, the role of AZGP1 in atherosclerosis and CHD was investigated. Serum AZGP1 levels from control ( n = 84) and CHD ( n = 91) patients were examined by ELISA and its relationship with various clinical parameters was analyzed. Immunohistochemistry and immunofluorescence were used to detect the expression of AZGP1 and its receptor in coronary atherosclerotic arteries. THP-1 and human embryonic kidney 293 cells were used to verify its anti-inflammatory role in atherosclerosis. Serum AZGP1 levels in CHD patients were lower than controls ( P < 0.01) and independently associated with CHD prevalence ( P = 0.021). AZGP1 levels also inversely correlated with the Gensini score. Immunohistochemistry and immunofluorescence showed that AZGP1 and its receptor β3-adrenoceptor (β3-AR) colocalized in lipid-rich areas of atherosclerotic plaques, particularly around macrophages. In vitro, AZGP1 had no effect on foam cell formation but showed anti-inflammatory effects through its regulation of JNK/AP-1 signaling. In summary, AZGP1 is an anti-inflammatory agent that can be targeted for CHD treatment.


2002 ◽  
Vol 227 (10) ◽  
pp. 908-913 ◽  
Author(s):  
A. V. Rao

Coronary heart disease (CHD) is one of the primary causes of death in the Western world. The emphasis so far has been on the relationship between serum cholesterol levels and the risk of CHD. More recently, oxidative stress induced by reactive oxygen species (ROS) is also considered to play an important part in the etiology of this disease. Oxidation of the circulating low-density lipoprotein (LDLox) is thought to play a key role in the pathogenesis of atherosclerosis and CHD. According to this hypothesis, macrophages inside the arterial wall take up the LDLox and initiate the process of plaque formation. Dietary antioxidants such as vitamin E and ß-carotene have been shown in In vitro studies to prevent the formation of LDLox and their uptake by microphages. In a recent study, healthy human subjects ingesting lycopene, a carotenoid antioxidant, in the form of tomato juice, tomato sauce, and oleoresin soft gel capsules for 1 week had significantly lower levels of LDLox compared with controls. The antioxidant effects of lycopene have also been shown in four other human trials, including one where lycopene consumption reduced the levels of breath pentane. However, in one recent study, dietary supplementation with ß-carotene but not with lycopene was shown to inhibit LDL oxidation. The sources of lycopene used in most of these studies were either tomato products or lycopene extracted from tomatoes containing other carotenoids in various proportions. Therefore, it is not possible to attribute the effects solely to lycopene. Mechanisms other than the antioxidant properties of lycopene have also been shown to reduce the risk of CHD. Lycopene was shown to inhibit the activity of an essential enzyme involved in cholesterol synthesis in an in vitro and a small clinical study suggesting a hypocholesterolemic effect. Other possible mechanisms include enhanced LDL degradation, LDL particle size and composition, plaque rupture, and altered endothelial functions. Recent epidemiological studies have also shown an inverse relationship between tissue and serum levels of lycopene and mortality from CHD, cerebrovascular disease, and myocardial infraction. However, the most impressive population-based evidence comes from a multicenter case-control study where subjects from 10 European countries were evaluated for relationship between antioxidant status and acute myocardial infarctions. After adjusting for a range of dietary variables, only lycopene levels but not ß-carotene were found to be protective. At present, the role of lycopene in the prevention of CHD is strongly suggestive. Although the antioxidant property of lycopene may be one of the principal mechanism for its effect, other mechanisms may also be responsible. Controlled clinical and dietary intervention studies using well-defined subject populations and disease end points must be undertaken in the future to provide definitive evidence for the role of lycopene in the prevention of CHD. Mechanistic studies must also be initiated to understand the mode of lycopene action.


2018 ◽  
Vol 2 (1) ◽  
pp. 47-54
Author(s):  
Eleonora TASHKENBAEVA ◽  
◽  
Dilshod TOGAEV ◽  
Farzona KADIROVA ◽  
Shukhrat ZIYADULLAEV ◽  
...  

Author(s):  
Jeini Ester Nelwan ◽  
Edi Widjajanto ◽  
Sri Andarini ◽  
Sasmito Djati ◽  
Oksfriani Jufri Sumampouw

2021 ◽  
Vol 12 (5) ◽  
Author(s):  
You-hong Wang ◽  
Zhen Guo ◽  
Liang An ◽  
Yong Zhou ◽  
Heng Xu ◽  
...  

AbstractRadioresistance continues to be the leading cause of recurrence and metastasis in nasopharyngeal cancer. Long noncoding RNAs are emerging as regulators of DNA damage and radioresistance. LINC-PINT was originally identified as a tumor suppressor in various cancers. In this study, LINC-PINT was significantly downregulated in nasopharyngeal cancer tissues than in rhinitis tissues, and low LINC-PINT expressions showed poorer prognosis in patients who received radiotherapy. We further identified a functional role of LINC-PINT in inhibiting the malignant phenotypes and sensitizing cancer cells to irradiation in vitro and in vivo. Mechanistically, LINC-PINT was responsive to DNA damage, inhibiting DNA damage repair through ATM/ATR-Chk1/Chk2 signaling pathways. Moreover, LINC-PINT increased radiosensitivity by interacting with DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and negatively regulated the expression and recruitment of DNA-PKcs. Therefore, these findings collectively support the possibility that LINC-PINT serves as an attractive target to overcome radioresistance in NPC.


Diagnostics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 76
Author(s):  
Anastasia Maslianitsyna ◽  
Petr Ermolinskiy ◽  
Andrei Lugovtsov ◽  
Alexandra Pigurenko ◽  
Maria Sasonko ◽  
...  

Coronary heart disease (CHD) has serious implications for human health and needs to be diagnosed as early as possible. In this article in vivo and in vitro optical methods are used to study blood properties related to the aggregation of red blood cells in patients with CHD and comorbidities such as type 2 diabetes mellitus (T2DM). The results show not only a significant difference of the aggregation in patients compared to healthy people, but also a correspondence between in vivo and in vitro parameters. Red blood cells aggregate in CHD patients faster and more numerously; in particular the aggregation index increases by 20 ± 7%. The presence of T2DM also significantly elevates aggregation in CHD patients. This work demonstrates multimodal diagnostics and monitoring of patients with socially significant pathologies.


2021 ◽  
Author(s):  
Rodrigo S Reis ◽  
Jules Deforges ◽  
Romy R Schmidt ◽  
Jos H M Schippers ◽  
Yves Poirier

Abstract A large portion of eukaryotic genes are associated with noncoding, natural antisense transcripts (NATs). Despite sharing extensive sequence complementarity with their sense mRNAs, mRNA-NAT pairs elusively often evade dsRNA-cleavage and siRNA-triggered silencing. More surprisingly, some NATs enhance translation of their sense mRNAs by yet unknown mechanism(s). Here we show that translation enhancement of the rice (Oryza sativa) PHOSPHATE1.2 (PHO1.2) mRNA is enabled by specific structural rearrangements guided by its noncoding antisense RNA (cis-NATpho1.2). Their interaction in vitro revealed no evidence of widespread intermolecular dsRNA formation, but rather specific local changes in nucleotide base-pairing, leading to higher flexibility of PHO1.2 mRNA at a key high GC regulatory region inhibiting translation, approximately 350 nucleotides downstream of the start codon. Sense-antisense RNA interaction increased formation of the 80S complex in PHO1.2, possibly by inducing structural rearrangement within this inhibitory region, thus making this mRNA more accessible to 60S. This work presents a framework for nucleotide-resolution studies of functional mRNA-antisense pairs. One-sentence summary: Interaction between PHO1.2 mRNA and its cis-natural antisense transcript enhances translation via a mechanism involving a local conformational shift and disruption of a key inhibitory region.


Sign in / Sign up

Export Citation Format

Share Document