scholarly journals Synthesis and Characterization of Hierarchical Mesoporous-Macroporous TiO2-ZrO2 Nanocomposite Scaffolds for Cancellous Bone Tissue Engineering Applications

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Shima Mahtabian ◽  
Zahra Yahay ◽  
Seyed Mehdi Mirhadi ◽  
Fariborz Tavangarian

Bone tissue engineering has been introduced several decades ago as a substitute for traditional grafting techniques to treat bone defects using engineered materials. The main goal in bone tissue engineering is to introduce materials and structures which can mimic the function of bone to restore the damaged tissue and promote cell restoration and proliferation. Titania and zirconia are well-known bioceramics which have been widely used in tissue engineering applications due to their unsurpassed characteristics. In this study, hierarchical meso/macroporous titania-zirconia (TiO2-ZrO2) nanocomposite scaffolds have been synthesized and evaluated for bone tissue engineering applications. The scaffolds were produced using the evaporation-induced self-assembly (EISA) technique along with the foamy method. To characterize the samples, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), simultaneous thermal analysis (STA), and Brunauer-Emmett-Teller (BET) analysis were performed. The results showed that TiO2-ZrO2 scaffolds can be produced after sintering the samples at 550°C for 2 h. Among samples with different weight percentages of zirconia and titania, the sample containing 13 wt.% zirconia was considered as the optimum sample due to its structural integrity. This scaffold had pore size, pore wall size, and mesopores in the range of 185±66 μm, 15±4 μm, and 7-13 nm, respectively. The specific surface area obtained from the BET theory, total volume, and mean diameter of pores of this sample was 13.627 m2g1-, 0.03788 cm3g-1, and 11 nm, respectively. The results showed that the produced scaffolds can be considered as the promising candidates for cancellous bone regeneration.

Nanomaterials ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 590 ◽  
Author(s):  
Yuchao Li ◽  
Chengzhu Liao ◽  
Sie Chin Tjong

This paper provides review updates on the current development of bionanocomposites with polymeric matrices consisting of synthetic biodegradable aliphatic polyesters reinforced with nanohydroxyaptite (nHA) and/or graphene oxide (GO) nanofillers for bone tissue engineering applications. Biodegradable aliphatic polyesters include poly(lactic acid) (PLA), polycaprolactone (PCL) and copolymers of PLA-PGA (PLGA). Those bionanocomposites have been explored for making 3D porous scaffolds for the repair of bone defects since nHA and GO enhance their bioactivity and biocompatibility by promoting biomineralization, bone cell adhesion, proliferation and differentiation, thus facilitating new bone tissue formation upon implantation. The incorporation of nHA or GO into aliphatic polyester scaffolds also improves their mechanical strength greatly, especially hybrid GO/nHA nanofilllers. Those mechanically strong nanocomposite scaffolds can support and promote cell attachment for tissue growth. Porous scaffolds fabricated from conventional porogen leaching, and thermally induced phase separation have many drawbacks inducing the use of organic solvents, poor control of pore shape and pore interconnectivity, while electrospinning mats exhibit small pores that limit cell infiltration and tissue ingrowth. Recent advancement of 3D additive manufacturing allows the production of aliphatic polyester nanocomposite scaffolds with precisely controlled pore geometries and large pores for the cell attachment, growth, and differentiation in vitro, and the new bone formation in vivo.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1339
Author(s):  
Hamouda M. Mousa ◽  
Kamal Hany Hussein ◽  
Mostafa M. Sayed ◽  
Mohamed K. Abd El-Rahman ◽  
Heung-Myong Woo

In tissue engineering, design of biomaterial with a micro/nano structure is an essential step to mimic extracellular matrix (ECM) and to enhance biomineralization as well as cell biocompatibility. Composite polymeric nanofiber with iron particles/ions has an important role in biomineralization and collagen synthesis for bone tissue engineering. Herein, we report development of polymeric cellulose acetate (CA) nanofibers (17 wt.%) and traces of iron acetates salt (0.5 wt.%) within a polymeric solution to form electrospinning nanofibers mats with iron nanoparticles for bone tissue engineering applications. The resulting mats were characterized using field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), Fourier transform infrared (FTIR), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The resulted morphology indicated that the average diameter of CA decreased after addition of iron from (395 ± 30) to (266 ± 19) nm and had dense fiber distributions that match those of native ECM. Moreover, addition of iron acetate to CA solution resulted in mats that are thermally stable. The initial decomposition temperature was 300 °C of CA/Fe mat > 270 °C of pure CA. Furthermore, a superior apatite formation resulted in a biomineralization test after 3 days of immersion in stimulated environmental condition. In vitro cell culture experiments demonstrated that the CA/Fe mat was biocompatible to human fetal-osteoblast cells (hFOB) with the ability to support the cell attachment and proliferation. These findings suggest that doping traces of iron acetate has a promising role in composite mats designed for bone tissue engineering as simple and economically nanoscale materials. Furthermore, these biomaterials can be used in a potential future application such as drug delivery, cancer treatment, and antibacterial materials.


2020 ◽  
Vol 55 ◽  
pp. 101452 ◽  
Author(s):  
P. Narmatha Christy ◽  
S. Khaleel Basha ◽  
V. Sugantha Kumari ◽  
A.K.H. Bashir ◽  
M. Maaza ◽  
...  

2017 ◽  
Vol 14 (4) ◽  
pp. 1355-1362
Author(s):  
Balraj Sundaram ◽  
M. C. John Milton

ABSTRACT: A biodegradable three-dimensional scaffolds have gathered attention and are widely studied for bone tissue engineering applications. In the present study, porous polycaprolactone scaffold entrapped with naringin loaded bovine serum albumin nanoparticles (PS-N-BSANP) has been engineered. Further, the prepared nanoparticles and interconnected porous scaffolds were characterized by scanning electron microscopy, X-ray diffraction and fourier transform infrared spectroscopy analysis. X- ray diffraction showed amorphization of naringin in PS-N-BSANP. In addition, sustained naringin release profile was observed from PS-N-BSANP for 12 days which showed a cumulative release of 52.54 micromolar (µM). Furthermore, conditioned medium from PS-N-BSANP showed an increased calcium deposition and collagen matrix formation under osteogenic conditions with C3H10T1/2 cell line. These results suggest that PS-N-BSANP enhanced the osteogenic differentiation potential in bone tissue engineering applications due to the controlled release of naringin.


2019 ◽  
Vol 96 ◽  
pp. 105-113 ◽  
Author(s):  
M. Rasoulianboroujeni ◽  
F. Fahimipour ◽  
P. Shah ◽  
K. Khoshroo ◽  
M. Tahriri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document