scholarly journals Study on the Creep Behavior of a Ni3Al-Based Single Crystal Alloy at 850°C/450 MPa

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Liwu Jiang ◽  
Yu Yang ◽  
Meiling Wu ◽  
Min Cai

The creep behaviors of Ni3Al-based single crystal alloy IC6SX with [001] and [111] orientations under the condition of 850°C/450 MPa were investigated. The effect of crystal orientation on the creep lives, fracture morphology, fracture mechanism, and dislocation evolution of the alloys with different orientations was analyzed systematically. The results showed that the creep lives of the alloy were closely related to the crystal orientation under the condition of 850°C/450 MPa. The creep lives of the single crystal alloys with [001] and [111] orientations were 56.3 h and 126.9 h, respectively. Moreover, the fracture morphologies of the two alloys with [001] and [111] orientations were different. The results showed that some holes formed at the fracture surface of the alloy with [111] rather than [001] orientation. Furthermore, the surface near the fracture of the two alloys with [001] and [111] orientations was serrated. Therefore, the fracture mechanism of the single crystal alloys with [001] and [111] orientations was ductile fracture. In addition, a large number of dislocations cut into the γ ′ phase. Therefore, the cutting mechanism of dislocations in the alloys with [001] and [111] orientations was the creep deformation mechanism.

Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4213
Author(s):  
Wei Hang ◽  
Xianwei Huang ◽  
Min Liu ◽  
Yi Ma

Relying on nanoindentation technology, the room-temperature creep behavior of a LiTaO3 single crystal in the typical orientation (01 1 ¯ 2), i.e., Y-42° plane was investigated. Three kinds of spherical tips with the radii of 0.76, 2.95 and 9.8 μm were respectively applied to detect nanoindentation length scale effect on creep deformation at both elastic and plastic regions. Superficially, both creep displacement and rate were nearly linearly increased with increasing holding depth and independent of tip size, which could be ascribed to the simultaneously enlarged holding strain and deformation volume beneath the indenter. At a similar holding strain, creep deformation, i.e., creep strain and strain rate were more pronounced under smaller spherical tips. Strain rate sensitivities of creep flows under different spherical tips and holding strains were also estimated. The potential room-temperature creep mechanism of LiTaO3 under high shear compression stress was discussed.


2020 ◽  
Vol 2020 ◽  
pp. 1-5
Author(s):  
Liwu Jiang ◽  
Xuezheng Dou ◽  
Meiling Wu

Ni3Al-based single crystal alloy IC6SX was prepared by seed crystal method. The effect of different stress conditions on creep behavior of this alloy at 980°C was investigated. The results showed that the creep life of this alloy at 980°C decreased significantly with the increase of stress. When the stress increased from 180 MPa to 230 MPa, the creep life dropped from 245.5 h to 69.3 h, and the steady-state creep rate increased slightly but not significantly. Meanwhile, the morphology of γ ′ phase and dislocation after creep were studied. The results showed that with the increase of stress, the density of dislocations in the γ ′ phase increased gradually, the strength of this alloy decreased gradually, so the creep life decreased significantly. The Y-NiMo phase resolved from the γ phase decreased gradually as the creep life decreased. The creep experiment of the alloy was carried out at 980°C. Due to the higher temperature, the diffusion of atoms in this alloy became faster. Deformation was not only caused by the slippage of dislocations in the crystal but also by the diffusion of atoms. Therefore, the creep mechanism of single crystal alloy IC6SX at this temperature is a mixed mechanism of dislocation glide and diffusion.


1981 ◽  
Vol 24 (196) ◽  
pp. 1864-1870 ◽  
Author(s):  
Mototaro SATO ◽  
Yoshio KATO ◽  
Kazuhiro TSUTIYA ◽  
Shoichi AOKI

2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Lei Li ◽  
Liangbo Ao ◽  
Gongnan Xie ◽  
Xinmei Wang ◽  
Gang Cao

Film cooling technology is developed to enhance the temperature resistant of nickel-base single crystal alloy blade. The shape, dimension, and arrangement of cooling holes impact the blade strength and life grievously. In this paper, the influences of holes arrangement on creep characteristic of cooling holes in the plate sample are investigated. The constitutive model for creep considering both cavitation and degradation damage is developed to predict the creep behavior of cooling holes. Results show that there are stress interferences among cooling holes. The distance and radius of the cooling holes impact the creep behavior of cooling holes seriously. Decreasing horizontal distance of the holes results in creep time reducing. On the contrary, increasing the vertical distance of the holes makes the creep time reduced.


1998 ◽  
Vol 29 (1) ◽  
pp. 179-189 ◽  
Author(s):  
A. Garg ◽  
S. V. Raj ◽  
R. D. Noebe ◽  
M. V. Nathal ◽  
R. Darolia

Crystals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 28
Author(s):  
Takuma Saito ◽  
Akira Ishida ◽  
Michinari Yuyama ◽  
Yuji Takata ◽  
Kyoko Kawagishi ◽  
...  

In this study, we investigated the creep deformation mechanism of a single-crystal high-entropy superalloy (HESA) with the spherical γ′ precipitates at 760 °C. Before the creep tests, long-term aging tests at 760 °C without load were conducted, which showed Ostwald ripening of the secondary γ′ precipitates up to 50 h. The creep tests revealed that in the range of 500 and 600 MPa at 760 °C, the creep deformation mechanism of HESA was independent of applied stress in both the primary and secondary creep regions. The deformation mechanism of HESA was further investigated under the condition of 760 °C and 520 MPa by performing creep interrupted tests and microstructural analysis. Scanning electron microscope observation showed elongated γ′ precipitates along the applied stress axis near the ruptured surface. This could have been caused by the multi-slip around <100> preceded by the lattice rotation into <100> along the tensile axis, which was confirmed by the electron backscatter diffraction analysis. Transmission electron microscope observation of the creep interrupted and ruptured specimens showed bypass and climb motion of dislocations in the 2-h interrupted, shearing of the γ′ precipitates by the paired straight dislocations in the 50-h interrupted, and shearing of the γ′ precipitates by both the straight and the curved paired dislocations in the ruptured specimens, respectively. The secondary γ′ precipitates do not affect creep behavior as long as the deformation mechanism is a bypass and climb motion of dislocations.


Sign in / Sign up

Export Citation Format

Share Document