scholarly journals Stability Analysis for Nonlinear Impulsive Control System with Uncertainty Factors

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Zemin Ren ◽  
Shiping Wen ◽  
Qingyu Li ◽  
Yuming Feng ◽  
Ning Tang

Considering the limitation of machine and technology, we study the stability for nonlinear impulsive control system with some uncertainty factors, such as the bounded gain error and the parameter uncertainty. A new sufficient condition for this system is established based on the generalized Cauchy–Schwarz inequality in this paper. Compared with some existing results, the proposed method is more practically applicable. The effectiveness of the proposed method is shown by a numerical example.

Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Yang Peng ◽  
Jiang Wu ◽  
Limin Zou ◽  
Yuming Feng ◽  
Zhengwen Tu

In this paper, we first present a generalization of the Cauchy-Schwarz inequality. As an application of our result, we obtain a new sufficient condition for the stability of a class of nonlinear impulsive control systems. We end up this note with a numerical example which shows the effectiveness of our method.


2016 ◽  
Vol 25 (06) ◽  
pp. 1650061 ◽  
Author(s):  
Zhen Shao ◽  
Zhengrong Xiang

This paper concerns the design of an observer-based repetitive control system (RCS) to improve the periodic disturbance rejection performance. The periodic disturbance is estimated by a repetitive learning based estimator (RLE) and rejected by incorporation of the estimation into a repetitive control (RC) input. Firstly, the configuration of the observer-based RCS with the RLE is described. Then, a continuous–discrete two-dimensional (2D) model is built to describe the RCS. By choosing an appropriate Lyapunov functional, a sufficient condition is proposed to guarantee the stability of the RCS. Finally, a numerical example is given to verify the effectiveness of the proposed method.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Zhi-Wei Liu ◽  
Zhi-Hong Guan ◽  
Hong Zhou

This paper studied the consensus problem of the leader-following multiagent system. It is assumed that the state information of the leader is only available to a subset of followers, while the communication among agents occurs at sampling instant. To achieve leader-following consensus, a class of distributed impulsive control based on sampling information is proposed. By using the stability theory of impulsive systems, algebraic graph theory, and stochastic matrices theory, a necessary and sufficient condition for fixed topology and sufficient condition for switching topology are obtained to guarantee the leader-following consensus of the multiagent system. It is found that leader-following consensus is critically dependent on the sampling period, control gains, and interaction graph. Finally, two numerical examples are given to illustrate the effectiveness of the proposed approach and the correctness of theoretical analysis.


2013 ◽  
Vol 2013 ◽  
pp. 1-11
Author(s):  
Dapeng Tian ◽  
Bao Zhang ◽  
Honghai Shen ◽  
Jiaquan Li

The wave variable has been proposed to achieve robust stability against the time delay in bilateral control system. However, the influence of the force source on the overall system is still not clear. This paper analyzes this problem and proposes a supplement to the stability analysis for wave variable based bilateral control. Based on the scattering theory, it is pointed out that the design of force source decides the passivity of the two-port network of slave robot. This passivity influences the stability of overall system. Based on the characteristic equation and small gain theorem, it is clear that inappropriate designed force source in encoding the wave variable destroys the stability in the presence of time delay. A wave domain filter makes up for the broken stability. The principle of this reparation is explained in this paper. A reference is also provided by the analysis to design the parameter of the wave domain filter. Experiments prove the correctness and validity.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012102
Author(s):  
V Venkatachalam ◽  
M Ramasubramanian ◽  
M Thirumarimurugan ◽  
D Prabhakaran

Abstract This paper presents an Investigation on the stability of network controlled temperature control system having Time-Invariant feedback delays, by utilizing a direct method for TDS stability analysis. A PI controller based stability analysis for temperature control system with Time invariant feedback loop delay has been constructed in this paper. The stability problem has been formulated based on the transfer function model of the closed loop system with various time delays. For different subsets of the controller parameters, based on the stability criterion’s maximal permissible bound of the network link delay that the closed loop system can accommodate without losing the stability has been computed. The effectiveness of the obtained result was validated on a benchmark temperature control system using MATLAB simulation software.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 235
Author(s):  
Gebreel Abdalrahman ◽  
Mohamed A. Daoud ◽  
William W. Melek ◽  
Fue-Sang Lien ◽  
Eugene Yee

A few studies have been conducted recently in order to improve the aerodynamic performance of Darrieus vertical-axis wind turbines with straight blades (H-type VAWTs). The blade pitch angle control is proposed to enhance the performance of H-type VAWTs. This paper aims to investigate the performance of an H-type VAWT in terms of its power output and self-starting capability using an intelligent blade pitch control strategy based on a multi-layer perceptron artificial neural network (MLP-ANN) method. The performance of the proposed blade pitch controller is investigated by adding a conventional controller (PID) to the MLP-ANN controller (i.e., a hybrid controller). The dynamics of an H-type VAWT is mathematically modeled in a nonlinear state space for the stability analysis in the sense of Lyapunov. The effectiveness of the proposed pitch control system is validated by building an H-type VAWT prototype model that is extensively tested outdoors under different conditions for both fixed and variable pitch angle configurations. Results demonstrated that the blade-pitching technique enhanced the power output of an H-type VAWT by approximately 22%. The hybrid controller that used a high percentage of the MLP-ANN controller achieved a better control performance by reducing the overshoot of the control response at high rotor speeds.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Hongqian Lu ◽  
Chaoqun Guo ◽  
Yue Hu ◽  
Wuneng Zhou

This paper discusses the stability of semi-Markovian jump networked control system containing time-varying delay and actuator faults. The system dynamic is optimized while the network resource is saved by introducing an improved static event-triggered mechanism. For deriving a less conservative stability criterion, the Bessel–Legendre inequalities approach is employed to the stability analysis and plays a major role. By constructing the enhanced Lyapunov–Krasovskii functional (LKF) relevant to the Legendre polynomials, a stability criterion with lower conservativeness indexed by N is derived, and the conservativeness will decrease as N increases. In addition, a controller is designed. To prove the validity of this paper, numerical examples are provided at the last.


Author(s):  
Radu-Emil Precup ◽  
◽  
Stefan Preitl ◽  
Péter Korondi ◽  

The paper presents development techniques for fuzzy controllers with dynamics and with predictive effect dedicated to some electrical drives with variable inertia. The development techniques are presented regarding the stability analysis based on programs developed in Matlab & Simulink. In addition, it presents points of view regarding the sensitivity analysis on the basis of some sensitivity models associated to the control system.


Sign in / Sign up

Export Citation Format

Share Document