scholarly journals Discussions on the Complete Strain Energy Characteristics of Deep Granite and Assessment of Rockburst Tendency

2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Lu Chen ◽  
Lijie Guo

In deep mining, the rockburst hazard has become a prominent problem. Rockburst is difficult to be predicted, and it gives a severe threat to mining safety. In this paper, the triaxial compressive tests with an acoustic emission (AE) device and full cyclic loading and unloading tests were carried out, respectively, to present characteristics of linear elastic strain energy and peak strain energy. Also, to consider the time-delay strain characteristics of granite found in the abovementioned tests, a new stage loading and unloading test with dual monitoring systems was designed and performed. Through 20 days’ time-delay strain monitoring, the peak-strength strain energy was further modified. The results showed that the peak strain energy is approximate 1.2-1.3 times than linear elastic strain energy under the same confining pressure, and after considering the time-delay strain effect, the modified maximal strain energy value of the deep granite significantly increased. The peak strain energy values are further enhanced from 1.0 × 104 J/m3 to 1.8 × 104 J/m3, respectively. At last, by taking advantage of the strain energy index model of rockburst, the tendency and intensity of rockburst were assessed contrastively.

Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1271
Author(s):  
Ruihe Zhou ◽  
Longhui Guo ◽  
Rongbao Hong

In order to study the energy evolution characteristics and damage constitutive relationship of siltstone, the conventional triaxial compression tests of siltstone under different confining pressures are performed, and the evolution laws of input energy, elastic strain energy and dissipative energy of siltstone with axial strain and confining pressure are analyzed. According to the test results, the judgment criterion of the rock damage threshold is improved, and an improved three-shear energy yield criterion is proposed., The damage constitutive equation of siltstone is established based on the damage mechanics theory through the principle of minimum energy consumption and by considering the residual strength of rock, and lastly, the rationality of the model is verified by experimental data. The results reveal that (1) both the input energy and dissipative energy gradually increase with the increase of axial strain, and the elastic strain energy first increases and then decreases with the increase of axial strain, and reaches its maximum at the peak. (2) The input energy and dissipation energy increase exponentially with the increase of the confining pressure, and the elastic strain energy increases linearly with the increase of confining pressure. (3) According to the linear relationship between the sum of shear strain energy and hydrostatic pressure, an improved three-shear energy yield criterion is established. (4) The model curve can better describe the strain softening stage and the residual strength characteristics of siltstone. The relative standard deviation between the model results and the test results is only 4.35%, which verifies the rationality and feasibility of the statistical damage constitutive model that is established in this paper.


Author(s):  
Y. C. Shih ◽  
J. W. Morris

A new phase which precipitates from a parent matrix has a size and shape which reflects its difference from parent phase. If the lattice mismatch is significant, the elastic strain energy is more important than the surface energy in determining the morphology and the preferred habit plane. The preferred habit of a tetragonal inclusion in a cubic matrix has been predicted by minimizing the elastic strain energy as from the Ktachaturyan linear elastic formula.


2021 ◽  
Vol 2021 ◽  
pp. 1-27
Author(s):  
Gui-Lin Wang ◽  
Tian-Ci Cao ◽  
Fan Sun ◽  
Xing-Xiang Wen ◽  
Liang Zhang

Energy conversion and release occur through the entire deformation and failure process in jointed rock masses, and the accumulation and dissipation of rock mass energy in engineering can reveal the entire process of deformation and instability. This study uses PFC2D to carry out numerical simulation tests on single-joint sandstone under uniaxial compression and biaxial compression, respectively, and analyse the influence of joint inclination, length, and confining pressure on the meso-energy conversion process and phase evolution of jointed sandstone. Through analysis, it is found that the input meso total strain energy is transformed into meso dissipated energy and meso-elastic strain energy. Macroscopic and microscopic joint sandstone law is consistent with the overall energy evolution; and the difference is reflected in two aspects: (1) the microlevel energy evolution has no initial compaction energy consumption section and (2) the linear energy storage section before the macroenergy evolution peak can be subdivided into two sections in the meso-level energy evolution. Under uniaxial compression, the energy values at the characteristic points of the meso-level energy evolution phases first asymmetrically decrease and then increase with the increase of the joint inclination. The initiation point of jointed sandstone is significantly affected by the length of the joint, and the degradation effect of the meso-energy at the damage point and peak point weakens with the increase of the joint length. Comparing the data obtained from the PFC numerical simulation with the experimental data, it is found that the error is small, which shows the feasibility of the numerical model in this paper. Under biaxial compression, the accumulation rate of meso-elastic strain at the peak point of the jointed sandstone first decreases and then increases with the joint inclination angle. After the peak of jointed sandstone, the rate of sudden change of meso-energy change decreases with the increase of joint length. The conditions of high confining pressure will promote the meso-accumulated damage degree of the jointed sandstone before the peak, while inhibiting the meso-energy and the mutation degree of the damage after the peak. The higher the confining pressure, the more obvious the joint length and inclination effect characteristics of the elastic strain energy at the peak point of the jointed sandstone.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Chen Chen ◽  
Lipeng Liu ◽  
Yu Cong

The excavation of deep tunnel in rock mass undergoes complex loading and unloading stress paths, resulting in rib spalling, flaking, and even severe rockburst disasters. Based on the variation law of the stress path of the surrounding rock, laboratory tests of rock mechanics are designed, and the deformation and strength behavior of marble with different initial confining pressure and unloading rates are systematically studied. By introducing strain increment, the characteristic stress, and the dilatancy index, the rock’s dilatancy and brittleness under different unloading conditions are quantitatively analyzed. During unloading, the energy transformation mechanism of rock is described, and the law of deformation and failure is discussed based on characteristic energy. The rock failure strength fitting formula is given by applying the Mogi–Coulomb criterion and elastic strain energy criterion. The advantages of the elastic strain energy criterion are theoretically explained. This study shows that comprehensive consideration of the complex stress paths, confining pressure levels, and the loading-unloading rates of surrounding rock is an effective way to accurately study unloading rock characteristics. The results can provide theoretical basis for stability analysis of high-stress underground engineering.


2002 ◽  
Vol 205 (15) ◽  
pp. 2211-2216 ◽  
Author(s):  
Stan L. Lindstedt ◽  
Trude E. Reich ◽  
Paul Keim ◽  
Paul C. LaStayo

SUMMARYDuring normal animal movements, the forces produced by the locomotor muscles may be greater than, equal to or less than the forces acting on those muscles, the consequences of which significantly affect both the maximum force produced and the energy consumed by the muscles. Lengthening (eccentric)contractions result in the greatest muscle forces at the lowest relative energetic costs. Eccentric contractions play a key role in storing elastic strain energy which, when recovered in subsequent contractions, has been shown to result in enhanced force, work or power outputs. We present data that support the concept that this ability of muscle to store and recover elastic strain energy is an adaptable property of skeletal muscle. Further, we speculate that a crucial element in that muscle spring may be the protein titin. It too seems to adapt to muscle use, and its stiffness seems to be`tuned' to the frequency of normal muscle use.


1980 ◽  
Vol 47 (3) ◽  
pp. 545-550 ◽  
Author(s):  
R. Kant ◽  
D. B. Bogy

The axisymmetric elastostatic problem of a cracked sphere embedded in a dissimilar matrix is solved by using the solution for a spherical cavity in an infinite medium together with the axisymmetric solution for a cracked sphere given in the companion paper in this issue of the Journal of Applied Mechanics, Pages 538-544. Numerical results are presented for (a) interface stress for various composites (b) dependence of the stress-intensity factor on the material parameters and ratios of crack to sphere radii, (c) the difference in the elastic strain energy for a cracked and uncracked composite.


Sign in / Sign up

Export Citation Format

Share Document