scholarly journals Numerical Simulations of GFRP-Reinforced Columns Having Polypropylene and Polyvinyl Alcohol Fibers

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Liaqat Ali ◽  
Ahsan Nawaz ◽  
Yong Bai ◽  
Ali Raza ◽  
Muhammad Kashif Anwar ◽  
...  

The present investigation aims to propose a numerical model for assessing the complex damaging response of glass fiber-reinforced polymer- (GFRP-) reinforced concrete columns having hybrid fibers and confined with GFRP spirals (GFHF columns) under concentric and eccentric compression. Fiber-reinforced concrete (FRC) consists of polyvinyl alcohol fibers (PVA) and polypropylene fibers (PF). A total of six GFHF circular columns were constructed having a circular cross section of 250 mm and a height of 1200 mm. A commercial package ABAQUS was used for the finite element analysis (FEA) of the GFHF columns by using a modified concrete damage plastic (CDP) model for hybrid fiber-reinforced concrete (HFRC). The damaging response of GFRP bars was defined using a linear elastic model. The results depicted that the failure of GFHF columns occurred either in the upper or in the lower half portion with the rupture of GFRP longitudinal bars and GFRP spirals. The decrease in the pitch of GFRP spirals led to an improvement in the axial strength (AS) of GFHF columns. The eccentric loading caused a significant reduction in the AS of columns. The comparative study solidly substantiates the validity and applicability of the newly developed FEA models for capturing the AS of GFHF columns by considering the axial involvement of longitudinal GFRP bars and the confinement effect of transverse GFRP spirals. So, the suggested numerical model having a complex system of equations for HFRC can be used for the accurate analysis of HFRC members.

2012 ◽  
Vol 430-432 ◽  
pp. 331-336
Author(s):  
Jian Hua Wang

Carbon fiber-reinforced polymer (CFRP) sheets have recently become popular for use as repair or rehabilitation material for deteriorated carbon fiber reinforced concrete structures. Carbon fiber reinforced concrete beams were analyzed by finite element software ANASYS. Through the finite element analysis, the results showed that using bonded CFRP to strengthen R. C. beams can significantly increase their load carrying capacity. However, the beams with prestressed CFRP can withstand larger ultimate loads than beams with bonded CFRP. Using bonded CFRP to strengthen R. C. beams can obviously reduce the ultimate deflection.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2093
Author(s):  
Jalal ◽  
Shafiq ◽  
Zahid

This paper presents the results of the behavior of end zone of post-tensioned (PT) beams made of fiber reinforced concrete (FRC). The principal aim of using FRC was to enhance the ductility and post-cracking behavior of end-zone of post-tensioned beams. A stronger and tougher end-zone of PT-beams is necessary when it is subjected to dynamic loading. Post-tensioned (PT) beams are typically used for the construction of bridges and industrial buildings, which are often subjected to vibrations and cyclic loading. Pre-mature cracking of the end zone (EZ) of a PT-beam is considered the type of problem that may cause the structural collapse. In this research program, polyvinyl alcohol (PVA) and copper-coated steel (CCS) fibers were used in concrete for improving the EZ performance of PT-beams. The use of FRC caused a 50% reduction in the shear reinforcement within the end zone of the PT-beam, which also avoided the congestion of steel in the end zone. Hence, the concrete was placed homogeneously, and smooth finished surfaces of the beams were obtained. FRC controlled the bursting of the end zone during the transfer of the full pre-stress force, and approximately 25% increment in the strain energy of the end zone was observed, which was also found efficient in strain diminution along the length of the beam.


2019 ◽  
Vol 972 ◽  
pp. 93-98
Author(s):  
Nurulain Hanida Mohamad Fodzi ◽  
M.H. Mohd Hisbany

This paper deals with behavior and capacity of punching shear resistance for ribbed slabs produce from self-compacting fiber reinforced concrete (SCFRC) by application of nonlinear finite element method. The analysis will be achieved by using ABAQUS software. The nonlinear finite element analysis by ABAQUS will be compare with the experimental results. Results and conclusions may be useful for establishing recommendation and need to be acknowledged.


Sign in / Sign up

Export Citation Format

Share Document