scholarly journals Analytical Multiloop Control for Multivariable Systems with Time Delays

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Zhiguo Wang ◽  
Peng Wei

In this paper, a new design method with performance improvements of multiloop controllers for multivariable systems is proposed. Precise expression is developed to show the relationship between the dynamic- and steady-state characteristics of the multiloop control system and its parameters. First, an equivalent transfer function (ETF) is introduced to decompose the multivariable system, based on which the multiloop controller parameters are calculated. According to the ETF matrix property, an analytical expression for the PI controller for multivariable systems is derived in terms of substituting the ETF matrix for the inverse open-loop transfer function. In the proposed controller design method, no approximation of the inverse of the process model is needed, implying that this method can be applied to some multivariable systems with high dimensions. The simulation results obtained from several examples demonstrate the effectiveness of the proposed method.

Author(s):  
Aimee S. Morgans ◽  
Ann P. Dowling

Model-based control has been successfully implemented on an atmospheric pressure lean premixed combustion rig. The rig incorporated a pressure transducer in the combustor to provide a sensor measurement, with actuation provided by a fuel valve. Controller design was based on experimental measurement of the open loop transfer function. This was achieved using a valve input signal which was the sum of an identification signal and a control signal from an empirical controller to eliminate the non-linear limit cycle. The transfer function was measured for the main instability occurring at a variety of operating conditions, and was found to be fairly similar in all cases. Using Nyquist and H∞-loop shaping techniques, several robust controllers were designed, based on a mathematical approximation to the measured transfer function. These were implemented experimentally on the rig, and were found to stabilise it under a variety of operating conditions, with a greater reduction in the pressure spectrum than had been achieved by the empirical controller.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Viorel Nicolau

In this paper, aspects of analytical design of PID controllers are studied, by combining pole placement technique with symmetrical optimum criterion. The proposed method is based on low-order plant model with pure integrator, and it can be used for both fast and slow processes. Starting from the desired closed-loop transfer function, which contains a second-order oscillating system and a lead-lag compensator, it is shown that the zero value depends on the real-pole value of closed-loop transfer function. In addition, there is only one pole value, which satisfies the assumptions of symmetrical optimum criterion imposed to open-loop transfer function. In these conditions, by combining the pole placement technique with symmetrical optimum criterion, the analytical expressions of the controller parameters can be simplified. For simulations, PID autopilot design for heading control problem of a conventional ship is considered.


2014 ◽  
Vol 1037 ◽  
pp. 294-298
Author(s):  
Yu Chuan Wu ◽  
Zheng Yan Gao Xu ◽  
Shuang Bao Ma

By presetting correcting device transfer function D(z), this paper puts forward series compensation design approach of minimum beat system. Compared with tradition design method, this way is much simpler and easier.


2001 ◽  
Vol 124 (1) ◽  
pp. 154-157 ◽  
Author(s):  
P. De Man ◽  
A. Franc¸ois ◽  
A. Preumont

A SISO control system is built by using a volume displacement sensor and a set of actuators driven in parallel with a single amplifier. The actuators location is optimized to achieve an open-loop transfer function which exhibits alternating poles and zeros, as for systems with collocated actuators and sensors; the search procedure uses a genetic algorithm. The ability of a simple lead compensator to control this SISO system is numerically demonstrated.


2012 ◽  
Vol 189 ◽  
pp. 364-368
Author(s):  
Zhao Yuan Wang ◽  
Guo Qing Wu

The magnetic suspension system is a strong nonlinear, uncertain and open-loop unstable system. All of these factors have increased the difficulty of maglev controller design. Considering the single freedom maglev system as the research object in this paper, structure analysis and modeling design are conducted for the system. By choosing new state variables, the system model is transformed. On the basis of that, we use back stepping design method to design the nonlinear suspension controller. Control performance of the controller can be observed by the Matlab/Simulink simulation.


Author(s):  
Song Zhang ◽  
Daisuke Iba ◽  
Akira Sone ◽  
Arata Masuda

This paper proposes a new method that is an optimization design of a passive vibration system based on linear control theory. A Force generated by spring and damper that are the design parameters of the passive vibration system have the same properties with a PD controller. So it is possible to apply a method that shapes an open-loop transfer function of the PD controller based on the GKYP lemma. By using the method, the gain and the phase of the transfer function can be designed with respect to each frequency band. As a result, it is not necessary to solve a difficult problem that is a bilinear matrix inequality problem obtained by an ordinary formulation.


2004 ◽  
Vol 126 (4) ◽  
pp. 899-904 ◽  
Author(s):  
O. Yaniv ◽  
M. Nagurka

This paper presents performance limitations and a control design methodology for nonminimum phase plants of the pure delay type subject to robustness constraints. Of interest is the design of a set of controllers, for which the open-loop transfer function is a proportional-integral (PI) controller plus delay, meeting constraints on the magnitude of the closed-loop transfer function and on the plant gain uncertainty. These two specifications are used to characterize the robustness, and are a recommended alternative to the gain and phase margin constraints. A control design plot is presented which allows for selection of controller parameters including those for the lowest sensitivity controller, and graphically highlights gain and phase margin tradeoffs. The paper discusses limitations of performance of such systems in terms of crossover frequency and sensitivity. In addition, expressions and design plots are provided for a simplified approximate solution.


Author(s):  
Tassadit Chekari ◽  
Rachid Mansouri ◽  
Maamar Bettayeb

This paper is aimed to propose a multiloop control scheme for fractional order multi-input multi-output (FO-MIMO) systems. It is an extension of the FO-multiloop controller design method developed for integer order multivariable systems to FO-MIMO ones. The interactions among the control loops are considered as disturbances and a two degrees-of-freedom (2DOF) paradigm is used to deal with the process outputs performance and the interactions reduction effect, separately. The proposed controller design method is simple, in relation with the desired closed-loop specifications and a tuning parameter. It presents an interest in controlling complex MIMO systems since fractional order models (FO-models) represent some real processes better than integer order ones and high order systems can be approximated by FO-models. Two examples are considered and compared with other existing methods to evaluate the proposed controller.


Sign in / Sign up

Export Citation Format

Share Document