scholarly journals Mixture Design Study of Fiber-Reinforced Self-Compacting Concrete for Prefabricated Street Light Post Structures

2020 ◽  
Vol 2020 ◽  
pp. 1-7 ◽  
Author(s):  
Wael Zatar ◽  
Tu Nguyen

In recent years, there has been an increasing demand to produce strong precast street light posts that are aesthetically pleasing. This study presents experimental results of a considerable number of mixture designs for fabricating precast street light posts where fiber-reinforced self-compacting concrete (FRSCC) was employed. The performance of many FRSCC mixtures was evaluated in terms of their structural properties and aesthetic characteristics. A trial-and-error procedure was performed for a series of FRSCC mixtures where silica fume, fly ash, and fibers were used. Slump flow and air content tests were conducted to determine the fresh FRSCC properties, and specimens were cast to evaluate their aesthetic. Three-day and seven-day compression tests were performed to examine the FRSCC hardened properties. The amount of cement in all batches was kept constant, whereas the distributions of fine and coarse aggregates, water, and other admixtures were adjusted. The largest slump flow of 73.7 cm (29 in) was recorded, and the maximum three-day compressive strength was 43 MPa (6209 psi). Further refinement of the mixtures, which displayed the best strength and aesthetic attributes, was performed. Test results of the selected FRSCC mixtures indicated an excellent slump flow, air content, and compression values while achieving advantageous aesthetic qualities. Seven-day compressive strength of 39 MPa (5686 psi) with the air content of 4.8 percent and the slump flow of 66 cm (26 in) was recorded. The study results and the developed FRSCC mixes can be used for mass production of precast concrete street light posts in precast plants.

2020 ◽  
Author(s):  
Wael Zatar ◽  
Hai Nguyen

Self-consolidating concrete (SCC) has been successfully employed to reduce construction time and enhance the quality, performance, and esthetic appearance of concrete structures. This research aimed at developing environmentally friendly fiber-reinforced concrete (FRC) consisting of SCC and recycled polypropylene (PP) fibers for sustainable construction of city buildings and transportation infrastructure. The addition of the PP fibers to SCC helps reducing shrinkage cracks and providing enhanced mechanical properties, durability, and ductility of the concrete materials. Several mix designs of self-consolidating fiber-reinforced concrete (SCFRC) were experimentally examined. Material and esthetic properties of the SCFRC mixtures that include micro silica, fly ash, and PP fibers were evaluated. Trial-and-adjustment method was employed to obtain practically optimum SCFRC mixtures, mixtures that are affordable and easy to make possessing enhanced compressive strength and esthetic properties. Slump flow and air content testing methods were used to determine the fresh properties of the SCFRC mixtures, and the esthetic properties of the mixtures were also evaluated. The hardened properties of the SCFRC mixtures were examined using three- and seven-day compression tests. The amount of fine/coarse aggregate, water, and other admixtures were varied while the Portland cement content in all mixtures was maintained unchanged. The maximum three-day compressive strength was 43.17 MPa and the largest slump flow was 736.6 mm. Test results showed enhanced material properties such as slump flow, air content and compressive strength values of the SCFRC mixtures and their excellent esthetic appearance. The favorable seven-day compressive strength of the SCFRC mixture, with 4.8 percent air content and 660.4 mm slump flow, is 39.26 MPa. The mixtures’ in this study are proven to be advantageous for potential SCFRC applications in architectural structures including building façades and esthetically-pleasing bridges.


2017 ◽  
Vol 67 (325) ◽  
pp. 111 ◽  
Author(s):  
D. Burgos ◽  
A. Guzmán ◽  
K. M.A. Hossain ◽  
S. Delvasto

This study evaluates the use of large amounts of fine powders (fillers) derived from a Colombian volcanic material into the production of self-compacting concrete (SCC) for lower strength applications. The effects on SCC properties were studied with the incorporation of up to 50% of volcanic material of Tolima (MVT) as a partial substitute of the total weight of Portland cement. The workability was determined through slump flow, V-funnel, and L-box test. The compressive strength results were analyzed statistically by MINITAB. These demonstrated that 30% (by total weight of cementitious material) was the maximum allowable percentage of MVT to be used in the production of SCCs. Based on this, mechanical and permeability properties of SCC MVT 30% were evaluated at 28, 90 y 360 curing days. SCC MVT 30% exhibited compressive strength of 21 and 27 MPa after 28 and 360 days of curing, respectively.


Self compacting concrete achieves compaction by itself without using mechanical vibration techniques. Addition of fibers to SCC results in increased performance mainly in flexure, and also in compressive strength. In this study both the flow and strength properties of single Fiber and blended fiber reinforced self compacting concrete are examined in comparison with control self compacting concrete. crimpled steel fibers having size of 0.45mm diameter x 12.5mm length (aspect ratio 27.7) and 0.45mm diameter x 20 mm length (aspect ratio 44.44) are used in the SCC mix at various percentages by weight of cement i.e. 0%, 2%, 4% and 6%. From the obtained results it can be seen that there is aadverse affect on flow properties. There is a moderate increase in the compressive strength, split tensile strength and considerable increase in the flexural strength of the self compacting concrete using the blended fibers at different percentages i.e. at 2% and 4%, when compared to the single fiber reinforced self compacting concrete.


2016 ◽  
Vol 22 (4) ◽  
pp. 520-528 ◽  
Author(s):  
Beata ŁAŹNIEWSKA-PIEKARCZYK

The influence of a type of new generation: superplasticizer (SP), anti-foaming admixture (AFA) and viscosity modifying admixture (VMA) on the air-content, workability of high performance self-compacting concrete (HPSCC) is analyzed in the paper. The purpose of this study was to examine the influence of type of the admixtures on porosity of HPSCC in the aspect of the compressive strength. The research results indicated that type of admixtures and its combina­tions result in different strengths of HPSCC, regardless of the total porosity characteristics of HPSCC.


2018 ◽  
Vol 4 (4) ◽  
pp. 776 ◽  
Author(s):  
Mushtaq Ahmad ◽  
Sana Ullah ◽  
Aneel Manan ◽  
Temple Chimuanya Odimegeu ◽  
Salmia Beddu

The study has conducted to determine the workability and compressive strength of the self –compacting concrete. The sand has replaced with quarry dust with the proportion of 10, 20, 30 and 40% and super plasticizer was added 0.9%. The experiments were carried out at the Infrastructure University Kuala Lumpur (IUKL) concrete laboratory. Slump flow, J- Ring tests were carried out to determine the workability of self-compacting concrete and compressive strength test was conducted on 7 days and 28th days of curing period. A finding of the study shows that workability and compressive strength has increased by addition of quarry dust. It is concluded that addition of quarry dust up to 30%  improve the workability of the self-compacting concrete and further addition of quarry dust decrease the workability. Additionally, compressive strength of the quarry dust modified self-compacting concrete shows the trend of higher compressive strength up to 30% addition of quarry dust with sand replacement and further addition decrease the compressive strength.


Author(s):  
Simon KAPRIELOV ◽  
Andrey SHEYNFELD ◽  
Igor ARZUMANOV ◽  
Igor CHILIN

The information about the new national standard GOST R «Self-compacting concrete mixtures. Specifications», developed by the «Research Institute for Concrete and Reinforced Concrete» named after A.A. Gvozdev, of JSC «Research Center of Construction», is presented. The standard applies to ready-to-use selfcompacting concrete mixtures of heavyweight, fine-grained, light-weight and reactive powder concretes, as well as fiber reinforced concretes, for the production of monolithic or precast concrete structures and products, the shape and reinforcement of which makes it difficult to place and compaction of an ordinary concrete mixture. The standard establishes new terms and definitions, types and designations, uniform requirements for new technological characteristics (slump-flow, segregation, viscosity and flowability), acceptance rules and test methods, production and transportation processes, control and evaluation procedures conformity of quality indicators of self-compacting concrete mixes.


2019 ◽  
Vol 28 ◽  
pp. 096369351988512 ◽  
Author(s):  
Yunyang Wang ◽  
Bingchen Zhao ◽  
Guang Yang ◽  
Yandong Jia ◽  
Lijun Yang ◽  
...  

The effect of recycled coarse aggregate (RCA) on the fresh and hardened properties of C40 self-compacting concrete (SCC) was investigated in this paper. The slump, T 500 (the time needed for SCC to spread into a round configuration with a nominal diameter of 500 mm), the slump flow and the flow time of fresh C40 SCC as well as the compressive strength and modulus of elasticity of hardened C40 SCC were studied. The modulus of elasticity of C40 SCC was calculated by theoretical formula, and the calculated values were compared with the experimental values. Mechanisms that effect on the C40 SCC properties at fresh and hardened states were also explored. The experimental results showed that the slump values of the C40 SCC are beyond 250 mm. The C40 SCC with RCA replacement content of 50% showed the highest slump value of 275 mm. All T 500 values of the C40 SCC are within 5 s. The slump flow of the C40 SCC slightly increases with the increase of replacement content of the RCA. In contrast, the compressive strength and modulus of elasticity of the C40 SCC slightly decrease with the increase of replacement content. The experimental values of modulus of elasticity are lower than that of the calculated values. Submerged in water before mixing of RCA leading to the slump flow of the C40 SCC increases with the increasing replacement content of the RCA. The old cement mortar attached to the RCA surface is the main reason that weakens the mechanical properties. The lower amount of coarse aggregate and the higher amount of cement paste attribute to the lower values of modulus of elasticity. This study implied that RCA can be effectively used in the production of C40 SCC without any significant sacrifice on workability and mechanical properties.


This paper explains the combined effect of granite cutting waste and recycled concrete on the workability and mechanical properties of self compacting concrete. Experimental plan is divided in such a way that granite cutting waste is replaced with fine aggregate at 0, 20,40,60,80 and 100% proportions. Recycled concrete is replaced with the coarse aggregate starting from 20 to 100%. Total 36 mixes were designed to check the fresh and hardened properties. Slump flow and T500, v-funnel and L-box test are conducted to know the flow ability and passing ability of concrete. To study the hardened properties compressive strength, flexural strength test values are to be collected.


2019 ◽  
Vol 9 (6) ◽  
pp. 4901-4904
Author(s):  
A. Saand ◽  
K. A. Jamali ◽  
M. A. Keerio ◽  
T. Ali ◽  
N. Bhatti

This paper presents the fresh properties of Self-Compacting Concrete (SCC) containing metakaolin (MK) produced by calcination of the natural material soorh of district Thatta Sind in Pakistan. Five mixes were tested, including four MK mixes replacing 5-20% of cement, with 0.38 water/binder (W/B) ratio. The fresh properties of the SCCs were evaluated using slump flow, T50, V-funnel, J ring, L-box and sieve segregation tests. Compressive strength of the control and the MK SCC was also investigated. The fresh concrete test results revealed that SCC could be developed by substituting cement with local MK, using 2% superplasticizers and without using a viscosity-modifying amplifier. The SCC with 15% replacement of cement with local MK showed maximum compressive strength, which was 10.39% higher than the control specimen’s without MK.


Sign in / Sign up

Export Citation Format

Share Document