scholarly journals Network Meta-Analysis of the Safety of Drug Therapy for Cardiogenic Shock

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Xianyong Liao ◽  
Lin Qian ◽  
Song Zhang ◽  
Xiang Chen ◽  
Jing Lei

Objectives. (1) To conduct a network meta-analysis of clinical drugs used for cardiogenic shock and (2) provide evidence for the selection of medication for the treatment of this condition. Methods. PubMed, EMBASE, Cochrane library, China HowNet (CNKI), Wanfang database, and Weipu database were searched using keywords Dopamine, Dobutamine, Epinephrine, Adrenaline, Norepinephrine, Noradrenaline, Milrinone, Natriuretic peptide, Recombinant human brain natriuretic peptide, Levosimendan, Cardiac shock, and Cardiogenic shock. We select literature according to prespecified inclusion and exclusion criteria and record data such as drug type, mortality, and adverse reactions. Results. Twenty-eight of 1387 articles met inclusion criteria, comprising 1806 patients who suffered from cardiogenic shock. Dopamine, dobutamine, epinephrine, norepinephrine, milrinone, recombinant human brain natriuretic peptide, and levosimendan were all commonly used in the treatment of cardiogenic shock. Milrinone was most effective at reducing mortality and had the lowest incidence of adverse reactions. Conclusion. This network meta-analysis demonstrated that milrinone was the most effective medication at reducing mortality and adverse events in patients suffering from cardiogenic shock.

2020 ◽  
Vol 21 (7) ◽  
pp. 2347
Author(s):  
Chengyang Xu ◽  
Ang Zheng ◽  
Tianyi He ◽  
Zhipeng Cao

Background: Cardiac complications after a stroke are the second leading cause of death worldwide, affecting the treatment and outcomes of stroke patients. Cardiac biomarkers such as cardiac troponin (cTn), brain natriuretic peptide (BNP), and N-terminal pro-brain natriuretic peptide (NT-proBNP) have been frequently reported in patients undergoing a stroke. The aim of the present study is to meta-analyze the relationship between changes in such cardiac biomarkers and stroke and to present a systematic review of the previous literature, so as to explore the brain–heart axis. Methods: We searched four online databases pertinent to the literature, including PubMed, Embase, the Cochrane Library, and the Web of Science. Then, we performed a meta-analysis to investigate changes in cTn, BNP, and NT-proBNP associated with different types of stroke. Results and Conclusions: A significant increase in cTnI concentration was found in patients exhibiting a brain hemorrhage. BNP increased in cases of brain infarction, while the NT-proBNP concentration was significantly elevated in patients suffering an acute ischemic stroke and brain hemorrhage, indicating cardiac damage and dysfunction after a stroke. Our analysis suggests that several potential mechanisms may be involved in the brain–heart axis. Finally, clinicians should pay careful attention to monitoring cardiac function in the treatment of cerebrovascular diseases in order to provide a timely and more accurate treatment.


2017 ◽  
Vol 45 (3) ◽  
pp. 904-911 ◽  
Author(s):  
Min Zhu ◽  
Chengmao Zhou ◽  
Bing Huang ◽  
Lin Ruan ◽  
Rui Liang

Objective This study was designed to compare the effectiveness of granisetron plus dexamethasone for preventing postoperative nausea and vomiting (PONV) in patients undergoing laparoscopic surgery. Methods We searched the literature in the Cochrane Library, PubMed, EMBASE, and CNKI. Results In total, 11 randomized controlled trials were enrolled in this analysis. The meta-analysis showed that granisetron in combination with dexamethasone was significantly more effective than granisetron alone in preventing PONV in patients undergoing laparoscopy surgery. No significant differences in adverse reactions (dizziness and headache) were found in association with dexamethasone. Conclusion Granisetron in combination with dexamethasone was significantly more effective than granisetron alone in preventing PONV in patients undergoing laparoscopic surgery, with no difference in adverse reactions between the two groups. Granisetron alone or granisetron plus dexamethasone can be used to prevent PONV in patients undergoing laparoscopic surgery.


2010 ◽  
Vol 145 (3) ◽  
pp. 540-541 ◽  
Author(s):  
Andrew Binder ◽  
Ignacio M. Seropian ◽  
Michael C. Kontos ◽  
Benjamin W. Van Tassell ◽  
Giuseppe G.L. Biondi-Zoccai ◽  
...  

Peptides ◽  
1992 ◽  
Vol 13 (1) ◽  
pp. 121-123 ◽  
Author(s):  
Kazuhiro Takahashi ◽  
Kazuhito Totsune ◽  
Masahiko Sone ◽  
Makoto Ohneda ◽  
Osamu Murakami ◽  
...  

1994 ◽  
Vol 86 (6) ◽  
pp. 723-730 ◽  
Author(s):  
B. M. Y. Cheung ◽  
J. E. C. Dickerson ◽  
M. J. Ashby ◽  
M. J. Brown ◽  
J. Brown

1. Brain natriuretic peptide, closely related to atrial natriuretic peptide in structure, may be an important circulating hormone. Its physiological role is unclear. First, we studied the effects of incremental infusions of brain natriuretic peptide in six healthy men on plasma brain natriuretic peptide levels and the pharmacokinetics of brain natriuretic peptide. Synthetic human brain natriuretic peptide-32 was infused intravenously, at an initial rate of 0.4 pmol min−1 kg−1, doubling every 15 min until the dose rate reached 6.4 pmol min−1 kg−1, at which rate the infusion was maintained for 30 min. 2. The brain natriuretic peptide infusion raised the brain natriuretic peptide-like immunoreactivity from 1.4 ± 0.5 pmol/l to 21.4 ± 7.6 pmol/l. Brain natriuretic peptide-like immunoreactivity after the end of infusion was consistent with a bi-exponential decay, with half-lives of 2.1 min and 37 min. 3. Next, we studied the effects of low-dose infusion of brain natriuretic peptide to mimic physiological increments in the circulating levels in comparison with atrial natriuretic peptide. Six dehydrated male subjects received intravenous infusions of atrial natriuretic peptide and brain natriuretic peptide, separately and in combination, in a randomized double-blind, placebo-controlled, four-part cross-over design. Atrial natriuretic peptide and brain natriuretic peptide were given at the rate of 0.75 and 0.4 pmol min−1 kg−1, respectively, for 3 h. The control infusion consisted of the vehicle. 4. Analysis of variance showed that atrial natriuretic peptide and atrial natriuretic peptide plus brain natriuretic peptide, but not brain natriuretic peptide alone, increased urinary flow and decreased urinary osmolality significantly. However, urinary sodium excretion was significantly increased by atrial natriuretic peptide, brain natriuretic peptide and atrial natriuretic peptide plus brain natriuretic peptide. 5. None of the four infusates significantly altered the blood pressure, heart rate or glomerular filtration rate. 6. This study showed, for the first time, that physiological increments in brain natriuretic peptide, like those in atrial natriuretic peptide, are natriuretic. Although atrial natriuretic peptide and brain natriuretic peptide do not appear to interact synergistically, they are likely to act in concert in the physiological regulation of sodium balance.


Sign in / Sign up

Export Citation Format

Share Document