scholarly journals Exploring Cortical Thickness Alteration in Parkinson Disease Patients with Freezing of Gaits

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
E. Li ◽  
Xiuhang Ruan ◽  
Yuting Li ◽  
Guoqin Zhang ◽  
Mengyan Li ◽  
...  

Background: Freezing of gait (FoG) is a disabling gait disorder that commonly occurs in advanced stages of Parkinson’s disease (PD). The neuroanatomical mechanisms underlying FoG in PD are still unclear. The present study aims to explore alterations of structural gray matter (GM) in PD patients with FoG. Method: Twenty-four PD patients with FoG (FoG+), 37 PD patients without FoG (FoG-) and 24 healthy controls (HC) were included. All subjects underwent a standardized MRI protocol. The cortical thickness (CTh), segmentation volume without ventricles (BrainSegVolNotVent) and estimated total intracranial volume (eTIV) were analysed using the FreeSurfer pipeline. Results: CTh differences were found in the right middle temporal gyrus (rMTG) generally. Compared to that in HCs, the CTh of the rMTG in both the FoG+ and FoG- groups was smaller, while no significant difference between the FoG+ and FoG- groups. Correlation analyses demonstrated a negative correlation between the CTh of the rMTG and the UPDRS part II score in PD subjects, and a borderline significant correlation between the score of Freezing of Gait Questionnaire (FoGQ) and rMTG CTh. Additionally, receiver operating characteristic curve (ROC) analysis revealed a cut-off point of CTh =3.08 mm in the rMTG that could be used to differentiate PD patients and HCs (AUC =0.79, P <0.01). There were no differences in the BrainSegVolNotVent or eTIV among the 3 groups. Conclusions: Our findings currently suggest no significant difference between FoG+ and FoG- patients in terms of structural gray matter changes. However, decreased CTh in the rMTG related to semantic control may be used as a biomarker to differentiate PD patients and HCs.

SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A32-A32
Author(s):  
A I Burns ◽  
A Bullock ◽  
A C Raikes ◽  
N S Dailey ◽  
M A Grandner ◽  
...  

Abstract Introduction Daytime sleepiness has been associated with some neuroimaging metrics, including altered functional connectivity within the default mode network and decreased gray matter volume (GMV) of the medial prefrontal cortex. Most prior studies, however, have focused on patients with sleep disorders or other pathologies. Here we examined the association between GMV and self-reported daytime sleepiness among a healthy group of young adults who reported no sleep-related problems. Methods Forty-five healthy adults (22 female; Mean Age=25.4, SD=5.6), who self-reported no history of sleep-related disorders or major medical conditions, completed the Epworth Sleepiness Scale (ESS), the Repeatable Battery for Neuropsychological Status (RBANS) and underwent high-resolution structural neuroimaging at 3T. Gray matter volumes were processed using standard procedures in SPM12. After controlling for age, sex, and intracranial volume, GMV was regressed against ESS scores. Results Greater ESS was associated with larger GMV within a cluster of voxels in the right middle temporal gyrus (MNI coordinates: 57, -9, -22; k=1344 voxels, p=.003, FWE cluster corrected). After controlling for ESS scores, larger GMV in this region was associated with poorer delayed memory performance (r=-.345, p=.022) and total neurocognitive performance on the RBANS (r=-.303, p=.046). Conclusion Greater daytime sleepiness in healthy normal sleepers was associated with greater GMV within a region of the right middle temporal gyrus. Greater volume of this region was also associated with poorer neuropsychological performance. Decreased GMV of this same region has previously been reported in patients with obstructive sleep apnea and insomnia, suggesting that it may be particularly sensitive to sleep disruption or may play a role in the etiology of sleep disorders, even among young individuals who deny any history of sleep-related dysfunction. Longitudinal work should focus on the potential of this region as a biomarker of vulnerability to sleep problems. Support  


Neurology ◽  
2020 ◽  
Vol 95 (12) ◽  
pp. e1672-e1685 ◽  
Author(s):  
Colin Groot ◽  
B.T. Thomas Yeo ◽  
Jacob W. Vogel ◽  
Xiuming Zhang ◽  
Nanbo Sun ◽  
...  

ObjectiveTo determine whether atrophy relates to phenotypical variants of posterior cortical atrophy (PCA) recently proposed in clinical criteria (i.e., dorsal, ventral, dominant-parietal, and caudal) we assessed associations between latent atrophy factors and cognition.MethodsWe employed a data-driven Bayesian modeling framework based on latent Dirichlet allocation to identify latent atrophy factors in a multicenter cohort of 119 individuals with PCA (age 64 ± 7 years, 38% male, Mini-Mental State Examination 21 ± 5, 71% β-amyloid positive, 29% β-amyloid status unknown). The model uses standardized gray matter density images as input (adjusted for age, sex, intracranial volume, MRI scanner field strength, and whole-brain gray matter volume) and provides voxelwise probabilistic maps for a predetermined number of atrophy factors, allowing every individual to express each factor to a degree without a priori classification. Individual factor expressions were correlated to 4 PCA-specific cognitive domains (object perception, space perception, nonvisual/parietal functions, and primary visual processing) using general linear models.ResultsThe model revealed 4 distinct yet partially overlapping atrophy factors: right-dorsal, right-ventral, left-ventral, and limbic. We found that object perception and primary visual processing were associated with atrophy that predominantly reflects the right-ventral factor. Furthermore, space perception was associated with atrophy that predominantly represents the right-dorsal and right-ventral factors. However, individual participant profiles revealed that the large majority expressed multiple atrophy factors and had mixed clinical profiles with impairments across multiple domains, rather than displaying a discrete clinical–radiologic phenotype.ConclusionOur results indicate that specific brain behavior networks are vulnerable in PCA, but most individuals display a constellation of affected brain regions and symptoms, indicating that classification into 4 mutually exclusive variants is unlikely to be clinically useful.


2020 ◽  
pp. 089198872096425
Author(s):  
Rakshathi Basavaraju ◽  
Xinyang Feng ◽  
Jeanelle France ◽  
Edward D. Huey ◽  
Frank A. Provenzano

Objectives: To understand the differential neuroanatomical substrates underlying apathy and depression in Frontotemporal dementia (FTD). Methods: T1-MRIs and clinical data of patients with behavioral and aphasic variants of FTD were obtained from an open database. Cortical thickness was derived, its association with apathy severity and difference between the depressed and not depressed were examined with appropriate covariates. Results: Apathy severity was significantly associated with cortical thinning of the lateral parts of the right sided frontal, temporal and parietal lobes. The right sided orbitofrontal, parsorbitalis and rostral anterior cingulate cortex were thicker in depressed compared to patients not depressed. Conclusions: Greater thickness of right sided ventromedial and inferior frontal cortex in depression compared to patients without depression suggests a possible requisite of gray matter in this particular area for the manifestation of depression in FTD. This study demonstrates a method for deriving neuroanatomical patterns across non-harmonized neuroimaging data in a neurodegenerative disease.


2021 ◽  
Vol 15 ◽  
Author(s):  
Madhukar Dwivedi ◽  
Neha Dubey ◽  
Aditya Jain Pansari ◽  
Raju Surampudi Bapi ◽  
Meghoranjani Das ◽  
...  

Previous cross-sectional studies reported positive effects of meditation on the brain areas related to attention and executive function in the healthy elderly population. Effects of long-term regular meditation in persons with mild cognitive impairment (MCI) and Alzheimer’s disease dementia (AD) have rarely been studied. In this study, we explored changes in cortical thickness and gray matter volume in meditation-naïve persons with MCI or mild AD after long-term meditation intervention. MCI or mild AD patients underwent detailed clinical and neuropsychological assessment and were assigned into meditation or non-meditation groups. High resolution T1-weighted magnetic resonance images (MRI) were acquired at baseline and after 6 months. Longitudinal symmetrized percentage changes (SPC) in cortical thickness and gray matter volume were estimated. Left caudal middle frontal, left rostral middle frontal, left superior parietal, right lateral orbitofrontal, and right superior frontal cortices showed changes in both cortical thickness and gray matter volume; the left paracentral cortex showed changes in cortical thickness; the left lateral occipital, left superior frontal, left banks of the superior temporal sulcus (bankssts), and left medial orbitofrontal cortices showed changes in gray matter volume. All these areas exhibited significantly higher SPC values in meditators as compared to non-meditators. Conversely, the left lateral occipital, and right posterior cingulate cortices showed significantly lower SPC values for cortical thickness in the meditators. In hippocampal subfields analysis, we observed significantly higher SPC in gray matter volume of the left CA1, molecular layer HP, and CA3 with a trend for increased gray matter volume in most other areas. No significant changes were found for the hippocampal subfields in the right hemisphere. Analysis of the subcortical structures revealed significantly increased volume in the right thalamus in the meditation group. The results of the study point out that long-term meditation practice in persons with MCI or mild AD leads to salutary changes in cortical thickness and gray matter volumes. Most of these changes were observed in the brain areas related to executive control and memory that are prominently at risk in neurodegenerative diseases.


2021 ◽  
Vol 14 ◽  
Author(s):  
Mariachiara Longarzo ◽  
Giulia Mele ◽  
Vincenzo Alfano ◽  
Marco Salvatore ◽  
Carlo Cavaliere

Interoception, the ability to perceive inner body sensations, has been demonstrated to be different among genders, with a stronger female attention toward interoceptive information. No study correlated this capability with brain differences between males and females. This study aims to detect behavioral variances and structural neuroimaging interoception correlates in a sample of healthy volunteers matched for age. Seventy-three participants (37 females, mean age 43.5; 36 males, mean age 37.4) completed the Self-Awareness Questionnaire (SAQ) for interoceptive sensibility and underwent a structural MRI session. A t test corrected for Bonferroni multiple comparisons was performed to compare brain morphological parameters (cortical thickness and parcel volume) in both groups. A multivariate analysis of variance was performed to assess the effect of gender on scores obtained on the SAQ. A moderation model through multiple linear regression analysis was performed between gray matter volumes or parcels, cortical thickness, and the interoception score. Group analysis showed significant differences in morphometric brain data between males and females, both for cortical and subcortical volumes, but not for cortical thickness analyses. MANOVA underlined a significant difference in SAQ scores between males and females with higher values for the second ones. Moreover, a significant correlation between the interoception scores and gray matter volumes of the two groups has been detected, with a sharp prevalence for the female gender in the left insula with F1, F2, and SAQ interoception scores (R2 = 0.41, p &lt; 0.001). Our results demonstrated that in the female group, a stronger predisposition was found toward interoceptive sensations, and that multiple brain areas were correlated with interoceptive measure. These data sustain a female advantage in the attention toward this process and support the idea that interoception in females is a process more shared across several regions that participate in creating the sense of self.


2021 ◽  
Vol 11 (1) ◽  
pp. 80
Author(s):  
Sindhuja T. Govindarajan ◽  
Ruiqi Pan ◽  
Lauren Krupp ◽  
Leigh Charvet ◽  
Tim Q. Duong

Slowed processing on the alerting, orienting and executive control components of attention measured using the Attention Network Test-Interactions (ANT-I) have been widely reported in multiple sclerosis (MS). Despite the assumption that these components correspond to specific neuroanatomical networks in the brain, little is known about gray matter changes that occur in MS and their association with ANT-I performance. We investigated vertex-wise cortical thickness changes and deep gray matter volumetric changes in young MS participants (N = 21, age range: 18–35) with pediatric or young-adult onset and mild disease severity. ANT-I scores and cortical thickness were not significantly different between MS participants and healthy volunteers (N = 19, age range: 18–35), but thalamic volumes were significantly lower in MS. Slowed reaction times on the alerting component in MS correlated significantly with reduced volume of the right pallidum in MS. Slowed reaction times on executive control component correlated significantly with reduced thickness in the frontal, parietal and visual cortical areas and with reduced volume of the left putamen in MS. These findings demonstrate associations between gray matter changes and attentional performance even in the absence of widespread atrophy or slowed attentional processes.


2021 ◽  
Vol 10 (23) ◽  
pp. 5480
Author(s):  
Laura Vidal ◽  
Miguel A Ortega ◽  
Miguel Angel Alvarez-Mon ◽  
Melchor Álvarez-Mon ◽  
Guillermo Lahera

Eating disorders are relatively frequent psychiatric disorders that can produce serious consequences at the brain level. In an effort to clarify the neurobiological mechanisms of their pathogenesis, some studies have suggested the existence of modifications of the cortical architecture in eating disorders, but it is unknown whether the alterations described are a cause or consequence of eating disorders. The main objective of this systematic review is to collect the evidence available about the volumetric alterations of the cerebral cortex in eating disorders in adults and their apparent relationship with the pathogenesis of the disease. Initially, 91 articles were found by a search that included the terms anorexia nervosa (AN), bulimia nervosa (BN), binge eating disorder, gray matter, cortical thickness (CT), and brain volume. To pare down the articles, the following inclusion criteria were applied: (1) cortical thickness and/or gray matter volume (GMV) in patients with anorexia, bulimia nervosa, or binge-eating disorder was the main measure of the study; and (2) the sample was adult patients aged 18–65. The exclusion criteria were as follows: (1) articles that did not analyze cortical thickness or gray matter volume; (2) studies with patients with comorbidities; and (3) studies in patients who did not meet the DSM-IV/DSM-V criteria. In the first phase of selection, we proceeded to read the titles and abstracts as a first screen, thereby excluding 62 studies, followed by a complete critical reading of the 29 remaining articles. In this last phase, nine studies were excluded because they did not specify the eating disorder subtype, they included adolescents, or they did not measure GMV or CT. Finally, after the above systematic selection process, 20 articles were included in this review. Despite the methodological heterogeneity of the studies, there was some agreement between them. They showed an overall reduction in GMV in eating disorders, as well as alterations in certain regions of the cerebral cortex. Some of the most often mentioned cortical areas were the frontal, cingulate, and right orbitofrontal cortices, the precuneus, the right insula, and some temporoparietal gyri in cases of AN, with greater cortical involvement in frontotemporal and medial orbitofrontal regions in BN and binge eating disorder. Likewise, certain cortical regions, such as the left inferior frontal gyrus, the precuneus, the right superior motor area, the cingulate cortex, the insula, and the medial orbitofrontal sulcus, often remained altered after recovery from AN, making them potential cortical areas involved in the etiopathogenesis of AN. A reduction in GMV in specific areas of the CNS can inform us about the neurobiological mechanisms that underlie eating disorders as well as give us a better understanding of their possible consequences at the brain level.


2020 ◽  
Vol 12 ◽  
Author(s):  
Junyu Lin ◽  
Xinran Xu ◽  
Yanbing Hou ◽  
Jing Yang ◽  
Huifang Shang

Purpose: This study aimed to identify consistent gray matter volume (GMV) changes in the two subtypes of multiple system atrophy (MSA), including parkinsonism subtype (MSA-P), and cerebellar subtype (MSA-C), by conducting a voxel-wise meta-analysis of whole brain voxel-based morphometry (VBM) studies.Method: VBM studies comparing MSA-P or MSA-C and healthy controls (HCs) were systematically searched in the PubMed, Embase, and Web of Science published from 1974 to 20 October 2020. A quantitative meta-analysis of VBM studies on MSA-P or MSA-C was performed using the effect size-based signed differential mapping (ES-SDM) method separately. A complementary analysis was conducted using the Seed-based d Mapping with Permutation of Subject Images (SDM-PSI) method, which allows a familywise error rate (FWE) correction for multiple comparisons of the results, for further validation of the results.Results: Ten studies were included in the meta-analysis of MSA-P subtype, comprising 136 MSA-P patients and 211 HCs. Five studies were included in the meta-analysis of MSA-C subtype, comprising 89 MSA-C patients and 134 HCs. Cerebellum atrophy was detected in both MSA-P and MSA-C, whereas basal ganglia atrophy was only detected in MSA-P. Cerebral cortex atrophy was detected in both subtypes, with predominant impairment of the superior temporal gyrus, inferior frontal gyrus, temporal pole, insula, and amygdala in MSA-P and predominant impairment of the superior temporal gyrus, middle temporal gyrus, fusiform gyrus, and lingual gyrus in MSA-C. Most of these results survived the FWE correction in the complementary analysis, except for the bilateral amygdala and the left caudate nucleus in MSA-P, and the right superior temporal gyrus and the right middle temporal gyrus in MSA-C. These findings remained robust in the jackknife sensitivity analysis, and no significant heterogeneity was detected.Conclusion: A different pattern of brain atrophy between MSA-P and MSA-C detected in the current study was in line with clinical manifestations and provided the evidence of the pathophysiology of the two subtypes of MSA.


2022 ◽  
Vol 15 ◽  
Author(s):  
Sébastien Celle ◽  
Claire Boutet ◽  
Cédric Annweiler ◽  
Romain Ceresetti ◽  
Vincent Pichot ◽  
...  

Background and Purpose: Leukoaraiosis, also called white matter hyperintensities (WMH), is frequently encountered in the brain of older adults. During aging, gray matter structure is also highly affected. WMH or gray matter defects are commonly associated with a higher prevalence of mild cognitive impairment. However, little is known about the relationship between WMH and gray matter. Our aim was thus to explore the relationship between leukoaraiosis severity and gray matter volume in a cohort of healthy older adults.Methods: Leukoaraiosis was rated in participants from the PROOF cohort using the Fazekas scale. Voxel-based morphometry was performed on brain scans to examine the potential link between WMH and changes of local brain volume. A neuropsychological evaluation including attentional, executive, and memory tests was also performed to explore cognition.Results: Out of 315 75-year-old subjects, 228 had punctuate foci of leukoaraiosis and 62 had begun the confluence of foci. Leukoaraiosis was associated with a decrease of gray matter in the middle temporal gyrus, in the right medial frontal gyrus, and in the left parahippocampal gyrus. It was also associated with decreased performances in memory recall, executive functioning, and depression.Conclusion: In a population of healthy older adults, leukoaraiosis was associated with gray matter defects and reduced cognitive performance. Controlling vascular risk factors and detecting early cerebrovascular disease may prevent, at least in part, dementia onset and progression.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Lili Nie ◽  
Zeyong Zhao ◽  
Xiantao Wen ◽  
Wei Luo ◽  
Tao Ju ◽  
...  

Abstract Background Previous studies of brain structure in methamphetamine users have yielded inconsistent findings, possibly reflecting small sample size and inconsistencies in duration of methamphetamine abstinence as well as sampling and analyses methods. Here we report on a relatively large sample of abstinent methamphetamine users at various stages of long-term abstinence. Methods Chronic methamphetamine users (n = 99), abstinent from the drug ranging from 12 to 621 days, and healthy controls (n = 86) received T1-weighted structural magnetic resonance imaging brain scans. Subcortical and cortical gray-matter volumes and cortical thickness were measured and the effects of group, duration of abstinence, duration of methamphetamine use and onset age of methamphetamine use were investigated using the Freesurfer software package. Results Methamphetamine users did not differ from controls in gray-matter volumes, except for a cluster in the right lateral occipital cortex where gray-matter volume was smaller, and for regions mainly in the bilateral superior frontal gyrui where thickness was greater. Duration of abstinence correlated positively with gray-matter volumes in whole brain, bilateral accumbens nuclei and insulae clusters, and right hippocampus; and with thickness in a right insula cluster. Duration of methamphetamine use correlated negatively with gray-matter volume and cortical thickness of a cluster in the right lingual and pericalcarine cortex. Conclusions Chronic methamphetamine use induces hard-to-recover cortical thickening in bilateral superior frontal gyri and recoverable volumetric reduction in right hippocampus, bilateral accumbens nuclei and bilateral cortical regions around insulae. These alternations might contribute to methamphetamine-induced neurocognitive disfunctions and reflect a regional specific response of the brain to methamphetamine.


Sign in / Sign up

Export Citation Format

Share Document