scholarly journals Gray-matter structure in long-term abstinent methamphetamine users

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Lili Nie ◽  
Zeyong Zhao ◽  
Xiantao Wen ◽  
Wei Luo ◽  
Tao Ju ◽  
...  

Abstract Background Previous studies of brain structure in methamphetamine users have yielded inconsistent findings, possibly reflecting small sample size and inconsistencies in duration of methamphetamine abstinence as well as sampling and analyses methods. Here we report on a relatively large sample of abstinent methamphetamine users at various stages of long-term abstinence. Methods Chronic methamphetamine users (n = 99), abstinent from the drug ranging from 12 to 621 days, and healthy controls (n = 86) received T1-weighted structural magnetic resonance imaging brain scans. Subcortical and cortical gray-matter volumes and cortical thickness were measured and the effects of group, duration of abstinence, duration of methamphetamine use and onset age of methamphetamine use were investigated using the Freesurfer software package. Results Methamphetamine users did not differ from controls in gray-matter volumes, except for a cluster in the right lateral occipital cortex where gray-matter volume was smaller, and for regions mainly in the bilateral superior frontal gyrui where thickness was greater. Duration of abstinence correlated positively with gray-matter volumes in whole brain, bilateral accumbens nuclei and insulae clusters, and right hippocampus; and with thickness in a right insula cluster. Duration of methamphetamine use correlated negatively with gray-matter volume and cortical thickness of a cluster in the right lingual and pericalcarine cortex. Conclusions Chronic methamphetamine use induces hard-to-recover cortical thickening in bilateral superior frontal gyri and recoverable volumetric reduction in right hippocampus, bilateral accumbens nuclei and bilateral cortical regions around insulae. These alternations might contribute to methamphetamine-induced neurocognitive disfunctions and reflect a regional specific response of the brain to methamphetamine.

2021 ◽  
Vol 15 ◽  
Author(s):  
Madhukar Dwivedi ◽  
Neha Dubey ◽  
Aditya Jain Pansari ◽  
Raju Surampudi Bapi ◽  
Meghoranjani Das ◽  
...  

Previous cross-sectional studies reported positive effects of meditation on the brain areas related to attention and executive function in the healthy elderly population. Effects of long-term regular meditation in persons with mild cognitive impairment (MCI) and Alzheimer’s disease dementia (AD) have rarely been studied. In this study, we explored changes in cortical thickness and gray matter volume in meditation-naïve persons with MCI or mild AD after long-term meditation intervention. MCI or mild AD patients underwent detailed clinical and neuropsychological assessment and were assigned into meditation or non-meditation groups. High resolution T1-weighted magnetic resonance images (MRI) were acquired at baseline and after 6 months. Longitudinal symmetrized percentage changes (SPC) in cortical thickness and gray matter volume were estimated. Left caudal middle frontal, left rostral middle frontal, left superior parietal, right lateral orbitofrontal, and right superior frontal cortices showed changes in both cortical thickness and gray matter volume; the left paracentral cortex showed changes in cortical thickness; the left lateral occipital, left superior frontal, left banks of the superior temporal sulcus (bankssts), and left medial orbitofrontal cortices showed changes in gray matter volume. All these areas exhibited significantly higher SPC values in meditators as compared to non-meditators. Conversely, the left lateral occipital, and right posterior cingulate cortices showed significantly lower SPC values for cortical thickness in the meditators. In hippocampal subfields analysis, we observed significantly higher SPC in gray matter volume of the left CA1, molecular layer HP, and CA3 with a trend for increased gray matter volume in most other areas. No significant changes were found for the hippocampal subfields in the right hemisphere. Analysis of the subcortical structures revealed significantly increased volume in the right thalamus in the meditation group. The results of the study point out that long-term meditation practice in persons with MCI or mild AD leads to salutary changes in cortical thickness and gray matter volumes. Most of these changes were observed in the brain areas related to executive control and memory that are prominently at risk in neurodegenerative diseases.


2019 ◽  
pp. 135910531986997 ◽  
Author(s):  
Huazhan Yin ◽  
Li Zhang ◽  
Dan Li ◽  
Lu Xiao ◽  
Mei Cheng

This study investigated the neuroanatomical basis of the association between depression/anxiety and sleep quality among 370 college students. The results showed that there was a significant correlation between sleep quality and depression/anxiety. Moreover, mediation results showed that the gray matter volume of the right insula mediated the relationship between depression/anxiety and sleep quality, which suggested that depression/anxiety may affect sleep quality through the right insula volume. These findings confirmed a strong link between sleep quality and depression/anxiety, while highlighting the volumetric variation in the right insula associated with emotional processing, which may play a critical role in improving sleep quality.


2020 ◽  
Author(s):  
Joshua M. Carlson ◽  
Lin Fang

AbstractIn a sample of highly anxious individuals, the relationship between gray matter volume brain morphology and attentional bias to threat was assessed. Participants performed a dot-probe task of attentional bias to threat and gray matter volume was acquired from whole brain structural T1-weighted MRI scans. The results replicate previous findings in unselected samples that elevated attentional bias to threat is linked to greater gray matter volume in the anterior cingulate cortex, middle frontal gyrus, and striatum. In addition, we provide novel evidence that elevated attentional bias to threat is associated with greater gray matter volume in the right posterior parietal cortex, cerebellum, and other distributed regions. Lastly, exploratory analyses provide initial evidence that distinct sub-regions of the right posterior parietal cortex may contribute to attentional bias in a sex-specific manner. Our results illuminate how differences in gray matter volume morphology relate to attentional bias to threat in anxious individuals. This knowledge could inform neurocognitive models of anxiety-related attentional bias to threat and targets of neuroplasticity in anxiety interventions such as attention bias modification.


Neurology ◽  
2021 ◽  
pp. 10.1212/WNL.0000000000013215
Author(s):  
Tiing Yee Siow ◽  
Cheng Hong Toh ◽  
Jung-Lung Hsu ◽  
Geng-Hao Liu ◽  
Shwu-Hua Lee ◽  
...  

Background and Objectives:The glymphatic system, which is robustly enabled during some stages of sleep, is a fluid-transport pathway that clears cerebral waste products. Most contemporary knowledge regarding glymphatic system is inferred from rodent experiments and human research is limited. The objective of the research is to explore the associations between human glymphatic function, sleep, neuropsychological performances, and cerebral gray matter volumes.Methods:This cross-sectional study included individuals 60 years or older who had participated in the Integrating Systemic Data of Geriatric Medicine to Explore the Solution for Health Aging study between September 2019 and October 2020. Community-dwelling older adults were enrolled at 2 different sites. Participants with dementia, major depressive disorders, and other major organ system abnormalities were excluded. Sleep profile was accessed using questionnaires and polysomnography. Administered neuropsychological test batteries included Everyday Cognition (ECog) and the Consortium to Establish a Registry for Alzheimer’s Disease Neuropsychological Battery (CERAD-NB). Gray matter volumes were estimated based on magnetic resonance imaging (MRI). Diffusion tensor imaging-analysis along the perivascular space (DTI-ALPS) index was used as the MRI marker of glymphatic function.Results:A total of 84 participants (mean [SD] age, 73.3 [7.1] years, 47 [56.0%] women) were analyzed. Multivariate linear regression model determined that age (unstandardized β, -0.0025 [SE, 0.0001]; P = 0.02), N2 sleep duration (unstandardized β, 0.0002 [SE, 0.0001]; P = 0.04), and the apnea-hypopnea index (unstandardized β, -0.0011 [SE, 0.0005]; P = 0.03) were independently associated with DTI-ALPS. Higher DTI-ALPS was associated with better ECog language scores (unstandardized β, -0.59 [SE, 0.28]; P = 0.04) and better CERAD-NB word-list-learning delayed recall subtest scores (unstandardized β, 6.17 [SE, 2.31]; P = 0.009) after co-varying for age and education. Higher DTI-ALPS was also associated with higher gray matter volume (unstandardized β, 107.00 [SE, 43.65]; P = 0.02) after controlling for age, gender, and total intracranial volume.Discussion:Significant associations were identified between glymphatic function and sleep stressing the importance of sleep for brain health. This study also revealed associations between DTI-ALPS, neuropsychological performances, and cerebral gray matter volumes suggesting the potential of DTI-ALPS as a biomarker for cognitive disorders.


SLEEP ◽  
2019 ◽  
Vol 42 (12) ◽  
Author(s):  
Ambra Stefani ◽  
Thomas Mitterling ◽  
Anna Heidbreder ◽  
Ruth Steiger ◽  
Christian Kremser ◽  
...  

Abstract Study Objectives Integrated information on brain microstructural integrity and iron storage and its impact on the morphometric profile is not available in restless legs syndrome (RLS). We applied multimodal magnetic resonance imaging (MRI) including diffusion tensor imaging, the transverse relaxation rate (R2*), a marker for iron storage, as well as gray and white matter volume measures to characterize RLS-related MRI signal distribution patterns and to analyze their associations with clinical parameters. Methods Eighty-seven patients with RLS (mean age 51, range 20–72 years; disease duration, mean 13 years, range 1–46 years, of those untreated n = 30) and 87 healthy control subjects, individually matched for age and gender, were investigated with multimodal 3T MRI. Results Volume of the white matter compartment adjacent to the post- and precentral cortex and fractional anisotropy (FA) of the frontopontine tract were both significantly reduced in RLS compared to healthy controls, and these alterations were associated with disease duration (r = 0.25, p = 0.025 and r = 0.23, p = 0.037, respectively). Corresponding gray matter volume increases of the right primary motor cortex in RLS (p < 0.001) were negatively correlated with the right FA signal of the frontopontine tract (r = −0.22; p < 0.05). Iron content evaluated with R2* was reduced in the putamen as well as in temporal and occipital compartments of the RLS cohort compared to the control group (p < 0.01). Conclusions Multimodal MRI identified progressing white matter decline of key somatosensory circuits that may underlie the perception of sensory leg discomfort. Increases of gray matter volume of the premotor cortex are likely to be a consequence of functional neuronal reorganization.


2012 ◽  
Vol 8 (1) ◽  
pp. 34-39 ◽  
Author(s):  
Mei-Kei Leung ◽  
Chetwyn C. H. Chan ◽  
Jing Yin ◽  
Chack-Fan Lee ◽  
Kwok-Fai So ◽  
...  

2020 ◽  
pp. 070674372092782 ◽  
Author(s):  
Kamyar Keramatian ◽  
Wayne Su ◽  
Gayatri Saraf ◽  
Trisha Chakrabarty ◽  
Lakshmi N. Yatham

Objective: It has been proposed that different stages of the bipolar disorder might have distinct neurobiological changes. However, the evidence for this has not been consistent, as the studies in early stages of the illness are limited by small sample sizes. The purpose of this study was to investigate the gray matter volume changes in bipolar patients who recently recovered from their first episode of mania (FEM). Methods: Using a whole-brain voxel-based analysis, we compared the regional gray matter volumes of 61 bipolar patients who have recovered from their FEM in the past 3 months with 43 age- and gender-matched healthy participants. We also performed a series of subgroup analyses to determine the effects of hospitalization during the FEM, history of depressive episodes, and exposure to lithium. Results: No statistically significant difference was found between gray matter volumes of FEM patients and healthy participants, even at a more liberal threshold ( P < 0.001, uncorrected for multiple comparisons). Voxel-based subgroup analyses did not reveal significant gray matter differences except for a trend toward decreased gray matter volume in left lateral occipital cortex ( P < 0.001, uncorrected) in patients with a previous history of depression. Conclusion: This study represents the largest structural neuroimaging investigation of FEM published to date. Early stage of bipolar disorder was not found to be associated with significant gray matter volume changes. Our findings suggest that there might be a window of opportunity for early intervention strategies to prevent or delay neuroprogression in bipolar disorder.


SLEEP ◽  
2020 ◽  
Vol 43 (9) ◽  
Author(s):  
Nicola Neumann ◽  
Martin Lotze ◽  
Martin Domin

Abstract Study Objectives Previous studies were inconsistent with regard to the association of sleep dysfunction on the brain’s gray matter volume (GMV). The current study set out to investigate if there is a moderating effect of sex on the relationship between sleep quality in healthy individuals and GMV. Methods We applied voxel-based morphometry in 1,074 young adults of the “Human Connectome Project.” An analysis of variance with the factors “sleep quality” (good/poor according to the Pittsburgh Sleep Quality Index, cutoff &gt;5) and “sex” (male, female) on GMV was conducted. Additionally, linear relationships between sleep quality and GMV were tested. Results The analysis of variance yielded no main effect for sleep quality, but an interaction between sex and sleep quality for the right superior frontal gyrus. Post hoc t-tests showed that female good sleepers in comparison to female poor sleepers had larger GMV in the right parahippocampal gyrus extending to the right hippocampus (whole-brain family-wise error [FWE]-corrected), as well as smaller GMV in the right inferior parietal lobule (whole-brain FWE-corrected) and the right inferior temporal gyrus (whole brain FWE-corrected). There were no significant effects when comparing male good sleepers to male poor sleepers. Linear regression analyses corroborated smaller GMV in the right parahippocampal gyrus in women with poor sleep quality. Conclusions Poor sleep quality was associated with altered GMV in females, but not in males. Future studies are needed to investigate the neurobiological mechanisms that underlie the sex differences in the association of sleep quality and brain differences found in this study.


2020 ◽  
Author(s):  
Paul Faulkner ◽  
Susanna Lucini Paioni ◽  
Petya Kozhuharova ◽  
Natasza Orlov ◽  
David J. Lythgoe ◽  
...  

AbstractCigarette smoking is still the largest contributor to disease and death worldwide. Successful cessation is hindered by decreases in prefrontal glutamate concentrations and gray matter volume due to daily smoking. Because non-daily, intermittent smoking also contributes greatly to disease and death, understanding whether infrequent tobacco use is associated with reductions in prefrontal glutamate concentrations and gray matter volume may aid public health. Eighty-five young participants (41 non-smokers, 24 intermittent smokers, 20 daily smokers, mean age ~23 years old), underwent 1H-magnetic resonance spectroscopy of the medial prefrontal cortex, as well as structural MRI to determine whole-brain gray matter volume. Compared to non-smokers, both daily and intermittent smokers exhibited lower concentrations of glutamate, creatine, N-acetylaspartate and myo-inositol in the medial prefrontal cortex, and lower gray matter volume in the right inferior frontal gyrus; these measures of prefrontal metabolites and structure did not differ between daily and intermittent smokers. Finally, medial prefrontal metabolite concentrations and right inferior frontal gray matter volume were positively correlated, but these relationships were not influenced by smoking status. This study provides the first evidence that both daily and intermittent smoking are associated with low concentrations of glutamate, creatine, N-acetylaspartate and myo-inositol, and low gray matter volume in the prefrontal cortex. Future tobacco cessation efforts should not ignore potential deleterious effects of intermittent smoking by considering only daily smokers. Finally, because low glutamate concentrations hinder cessation, treatments that can normalize tonic levels of prefrontal glutamate, such as N-acetylcysteine, may help intermittent and daily smokers to quit.


Sign in / Sign up

Export Citation Format

Share Document