scholarly journals Changes in Extreme Precipitation in the Mekong Basin

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Lu Liu ◽  
Peng Bai ◽  
Changming Liu ◽  
Wei Tian ◽  
Kang Liang

Extreme precipitation events can trigger many natural disasters like floods, mudslides, and landslides. Understanding historical changes in extreme precipitation is critical for disaster prevention and risk assessment. The Mekong River Basin (MB) is vulnerable to natural disasters related to extreme precipitation. In the past ten years, the MB has experienced some destructive extreme precipitation events. Our concern is whether the historical extreme precipitation events in the MB have increased in a warming climate. This study investigates the spatiotemporal changes in extreme precipitation in the MB from 1951 to 2015 using a high-quality precipitation product and eight indices of extreme precipitation. These indices consistently indicate that the trend in extreme precipitation in the Upper Mekong Basin (UMB) is opposite to that in the Lower Mekong Basin (LMB). Extreme precipitation has generally decreased in the UMB but increased in the LMB. The areas with significant increasing extreme precipitation are mainly located in Laos, Vietnam, and Cambodia. The areas with a statistically significant decline in extreme precipitation primarily occur in the Lancang (China’s section of the Mekong river) and Thailand. Also, the magnitude of changes in extreme precipitation is significantly larger in the LMB than that in the UMB, which potentially increases flooding risks in the LMB. The findings from this study are useful for guiding disaster-prevention efforts in the MB.

2012 ◽  
Vol 13 (1) ◽  
pp. 47-66 ◽  
Author(s):  
Pavel Ya. Groisman ◽  
Richard W. Knight ◽  
Thomas R. Karl

Abstract In examining intense precipitation over the central United States, the authors consider only days with precipitation when the daily total is above 12.7 mm and focus only on these days and multiday events constructed from such consecutive precipitation days. Analyses show that over the central United States, a statistically significant redistribution in the spectra of intense precipitation days/events during the past decades has occurred. Moderately heavy precipitation events (within a 12.7–25.4 mm day−1 range) became less frequent compared to days and events with precipitation totals above 25.4 mm. During the past 31 yr (compared to the 1948–78 period), significant increases occurred in the frequency of “very heavy” (the daily rain events above 76.2 mm) and extreme precipitation events (defined as daily and multiday rain events with totals above 154.9 mm or 6 in.), with up to 40% increases in the frequency of days and multiday extreme rain events. Tropical cyclones associated with extreme precipitation do not significantly contribute to the changes reported in this study. With time, the internal precipitation structure (e.g., mean and maximum hourly precipitation rates within each preselected range of daily or multiday event totals) did not noticeably change. Several possible causes of observed changes in intense precipitation over the central United States are discussed and/or tested.


Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1089 ◽  
Author(s):  
Yifeng Peng ◽  
Xiang Zhao ◽  
Donghai Wu ◽  
Bijian Tang ◽  
Peipei Xu ◽  
...  

Extreme precipitation events, which have intensified with global warming over the past several decades, will become more intense in the future according to model projections. Although many studies have been performed, the occurrence patterns for extreme precipitation events in past and future periods in China remain unresolved. Additionally, few studies have explained how extreme precipitation events developed over the past 58 years and how they will evolve in the next 90 years as global warming becomes much more serious. In this paper, we evaluated the spatiotemporal characteristics of extreme precipitation events using indices for the frequency, quantity, intensity, and proportion of extreme precipitation, which were proposed by the World Meteorological Organization. We simultaneously analyzed the spatiotemporal characteristics of extreme precipitation in China from 2011 to 2100 using data obtained from the Coupled Model Intercomparison Project Phase 5 (CMIP5) models. Despite the fixed threshold, 95th percentile precipitation values were also used as the extreme precipitation threshold to reduce the influence of various rainfall events caused by different geographic locations; then, eight extreme precipitation indices (EPIs) were calculated to evaluate extreme precipitation in China. We found that the spatial characteristics of the eight EPIs exhibited downward trends from south to north. In the periods 1960–2017 and 2011–2100, trends in the EPIs were positive, but there were differences between different regions. In the past 58 years, the extreme precipitation increased in the northwest, southeast, and the Tibet Plateau of China, while decreased in northern China. Almost all the trends of EPIs are positive in the next two periods (2011–2055 and 2056–2100) except for some EPIs, such as intensity of extreme precipitation, which decrease in southeastern China in the second period (2056–2100). This study suggests that the frequency of extreme precipitation events in China will progressively increase, which implies that a substantial burden will be placed on social economies and terrestrial ecological processes.


2021 ◽  
Author(s):  
Renaud Falga ◽  
Chien Wang

<p>The South Asian monsoon system impacts the livelihoods of over a billion people. While the overall monsoon rainfall is believed to have decreased during the 20<sup>th</sup> century, there is a good agreement that the extreme precipitation events have been rising in some parts of India. As an important part of the Indian population is dependent on rainfed agriculture, such a rise in extremes, along with resulting flood events, can be all the more problematic. Although studies tend to link this rise in extreme events with anthropogenic forcing, some uncertainties remain on the exact causes. In order to examine the correlation between anthropogenic forcings and the different trends in extreme events, we have analyzed the high-resolution daily rainfall data in the past century delivered by the Indian Meteorological Department alongside several other economic and ecological estimates. The results from this analysis will be presented in detail.</p>


Urban Climate ◽  
2021 ◽  
Vol 35 ◽  
pp. 100753
Author(s):  
Daniele Tôrres Rodrigues ◽  
Weber Andrade Gonçalves ◽  
Maria Helena Constantino Spyrides ◽  
Lara de Melo Barbosa Andrade ◽  
Diego Oliveira de Souza ◽  
...  

A information mining approach is displayed and connected to examine the climatic reasons for outrageous climatic occasions. Our methodology involves two primary strides of information extraction connected progressively, so as to decrease the trouble of the first informational index. The objective is to recognize an a lot littler subset of climatic factors that may in any case have the option to portray or even anticipate the outrageous occasions. The initial step applies a class correlation strategy. The subsequent advance comprises of a choice tree learning calculation utilized as a prescient model to outline set of measurably most huge atmosphere factors recognized in the past advance to classes of precipitation quality. The procedure is utilized to the investigation the climatic reasons for two outrageous occasions happened in India the most recent decade: the Chennai 2015 extraordinary precipitation disaster and the Tamilnadu(except Chennai) inadequacy of 2016. In the two cases, our outcomes are in great concurrence with investigations distributed in the writing


2020 ◽  
Vol 21 (8) ◽  
pp. 1827-1845 ◽  
Author(s):  
Qian Cao ◽  
Alexander Gershunov ◽  
Tamara Shulgina ◽  
F. Martin Ralph ◽  
Ning Sun ◽  
...  

AbstractPrecipitation extremes are projected to become more frequent along the U.S. West Coast due to increased atmospheric river (AR) activity, but the frequency of less intense precipitation events may decrease. Antecedent soil moisture (ASM) conditions can have a large impact on flood responses, especially if prestorm precipitation decreases. Taken together with increased antecedent evaporative demand due to warming, this would result in reduced soil moisture at the onset of extreme precipitation events. We examine the impact of ASM on AR-related floods in a warming climate in three basins that form a transect along the U.S. Pacific Coast: the Chehalis River basin in Washington, the Russian River basin in Northern California, and the Santa Margarita River basin in Southern California. We ran the Distributed Hydrology Soil Vegetation Model (DHSVM) over the three river basins using forcings downscaled from 10 global climate models (GCMs). We examined the dynamic role of ASM by comparing the changes in the largest 50, 100, and 150 extreme events in two periods, 1951–2000 and 2050–99. In the Chehalis basin, the projected fraction of AR-related extreme discharge events slightly decreases. In the Russian basin, this fraction increases, however, and more substantially so in the Santa Margarita basin. This is due to increases in AR-related extreme precipitation events, as well as the fact that the relationship of extreme precipitation to extreme discharge is strengthened by projected increases in year-to-year volatility of annual precipitation in California, which increases the likelihood of concurrent occurrence of large storms and wet ASM conditions.


Sign in / Sign up

Export Citation Format

Share Document