scholarly journals A Comparison Investigation on Cylinder Test in Different Ambient Media by Experiment and Numerical Simulation

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Fan Zhang ◽  
Fei Shen ◽  
Biaobiao Li ◽  
Baohui Yuan ◽  
Bing Li

When the detonation reaction occurs after the charge in the warhead is ignited, the propagation of the detonation wave and the expansion of the detonation product will interact with the wrapped metallic shell and cause the shell material to accelerate, extremely deform, and eventually rupture, which is a typical strong fluid-structure interaction problem. In this paper, a comparison investigation on a cylinder test in different ambient media was implemented by experiment and numerical simulation, respectively. In the experimental test, the attention was paid to discussing the differences of the accelerating process of the cylinder metal wall, the expansion modes, and the fragment shape of the cylinder due to the medium with different shock wave impedance which surrounds the cylinder shell. For the numerical simulation, a coupling scheme of a meshless method and finite element method called the coupled finite element material point method was used to reproduce the cylinder expansion problem driven by explosive sliding detonation where the interaction between the cylinder wall and the explosive/detonation product is enforced by using a point-to-surface contact scheme to accurately achieve contact and separation between material particles and finite elements. Lastly, the macroscopic and microscopic states of the cylinder failure were compared and discussed for further discussion.

1986 ◽  
Vol 14 (2) ◽  
pp. 125-136 ◽  
Author(s):  
Y. Nakajima ◽  
J. Padovan

Abstract This paper extends the finite element simulation scheme to handle the problem of tires undergoing sliding (skidding) impact into obstructions. Since the inertial characteristics are handled by the algorithm developed, the full range of operating environments can be accommodated. This includes the treatment of impacts with holes and bumps of arbitrary geometry.


2020 ◽  
Vol 65 (1) ◽  
pp. 51-58
Author(s):  
Sava Ianici

The paper presents the results of research on the study of the elastic deformation of a flexible wheel from a double harmonic transmission, under the action of a cam wave generator. Knowing exactly how the flexible wheel is deformed is important in correctly establishing the geometric parameters of the wheels teeth, allowing a better understanding and appreciation of the specific conditions of harmonic gearings in the two stages of the transmission. The veracity of the results of this theoretical study on the calculation of elastic deformations and displacements of points located on the average fiber of the flexible wheel was subsequently verified and confirmed by numerical simulation of the flexible wheel, in the elastic field, using the finite element method from SolidWorks Simulation.


2012 ◽  
Vol 229-231 ◽  
pp. 55-58
Author(s):  
Jun Fan

To obtain the know-how of the deficiency for the filling capability, taking Ti75 alloy as the research object, at the same height of reducing, strain rates during forming as the control objective, the finite element numerical simulation method was used to simulate the hot compression with DEFORM-3D, analyzing the effect of the strain rates on the distribution of strain and stress.


2016 ◽  
Vol 879 ◽  
pp. 274-278 ◽  
Author(s):  
Jun Cao ◽  
Philip Nash

In an earlier study, a 3-D thermomechanical coupled finite element model was built and experimentally validated to investigate the evolution of the thermal residual stresses and distortions in electron beam additive manufactured Ti-6Al-4V build plates. In this study, an investigation using this robust and accurate model was focused on an efficient preheating method, in which the electron beam quickly scanned across the substrate to preheat the build plate prior to the deposition. Various preheat times, beam powers, scan rates, scanning paths and cooling times (between the end of current preheat scan/deposition layer and the beginning of the next preheat scan/deposition layer) were examined, and the maximum distortion along the centerline of the substrate and the maximum longitudinal residual stress along the normal direction on the middle cross-section of the build plate were quantitatively compared. The results show that increasing preheat times and beam powers could effectively reduce both distortion and residual stress for multiple layers/passes components.


2011 ◽  
Vol 474-476 ◽  
pp. 251-254
Author(s):  
Jian Jun Wu ◽  
Wei Liu ◽  
Yu Jing Zhao

The multi-step forward finite element method is presented for the numerical simulation of multi-step sheet metal forming. The traditional constitutive relationship is modified according to the multi-step forming processes, and double spreading plane based mapping method is used to obtain the initial solutions of the intermediate configurations. To verify the multi-step forward FEM, the two-step simulation of a stepped box deep-drawing part is carried out as it is in the experiment. The comparison with the results of the incremental FEM and test shows that the multi-step forward FEM is efficient for the numerical simulation of multi-step sheet metal forming processes.


Sign in / Sign up

Export Citation Format

Share Document