scholarly journals A Simple RFLP-Based Method for HFE Gene Multiplex Amplification and Determination of Hereditary Hemochromatosis-Causing Mutation C282Y and H63D Variant with Highly Sensitive Determination of Contamination

2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Ludmilla OGOUMA-AWORET ◽  
Jean-Pierre RABES ◽  
Philippe de MAZANCOURT

Hereditary hemochromatosis is an autosomal recessive disorder with incomplete penetrance that results from excess iron absorption and can lead to chronic liver disease, fibrosis, cirrhosis, and hepatocellular carcinoma. The most common form of hereditary hemochromatosis in Western Europe is due to a homozygous mutation (p.(Cys282Tyr) or C282Y), in the HFE gene which encodes hereditary haemochromatosis protein. In the general European population, the frequency of the homozygous genotype is 0.4%, and this mutation explains up to 95% of hereditary hemochromatosis in France. We report here an improved PCR and restriction endonuclease assay based on multiplex amplification of HFE exon 4 (for C282Y detection), HFE exon 2 (for H63D detection), FZD1 gene (for digestion controls), and two Short Tandem Repeats (SE33 and FGA) for identity monitoring and contamination tracking. Fluorescent primers allow capillary electrophoresis, accurate allele tagging, and sensitive contamination detection.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1859-1859
Author(s):  
Patricia Aguilar-Martinez ◽  
Severine Cunat ◽  
Fabienne Becker ◽  
Francois Blanc ◽  
Marlene Nourrit ◽  
...  

Abstract Introduction: Homozygozity for the p.Cys282Tyr (C282Y) mutation of the HFE gene is the main genotype associated with the common form of adult hereditary hemochromatosis. C282Y carriers do not usually develop iron overload, unless they have additional risk factors such as liver diseases, a dysmetabolic syndrome or an associated genetic defect. The commonest is the compound heterozygous state for C282Y and the widespread p.His63Asp (H63D) variant allele. However, a few rare HFE mutations can be found on the 6th chromosome in trans, some of which are of clinical interest to fully understand the disorder. Patients and Methods: We recently investigated four C282Y carrier patients with unusually high iron parameters, including increased levels of serum ferritin (SF), high transferrin saturation (TS) and high iron liver content measured by MRI. They were males, aged 37, 40, 42, 47 at diagnosis. Two brothers (aged 40 and 42) were referred separately. The HFE genotype, including the determination of the C282Y, H63D and S65C mutations was performed using PCR-RFLP. HFE sequencing was undertaken using the previously described SCA method (1). Sequencing of other genes (namely, HAMP, HJV/HFE2, SLC40A1, TFR2) was possibly performed in a last step using the same method. Results: We identified three rare HFE mutant alleles, two of which are undescribed, in the four studied patients. One patient bore a 13 nucleotide-deletion in exon 6 (c.[1022_1034del13], p.His341_Ala345>LeufsX119), which is predicted to lead to an abnormal, elongated protein. The two brothers had a substitution of the last nucleotide of exon 2 (c.[340G>A], p.Glu114Lys) that may modify the splicing of the 2d intron. The third patient, who bore an insertion of a A in exon 4 (c.[794dupA],p.[trp267LeufsX80]), has already been reported (1). Discussion: A vast majority of C282Y carriers will not develop iron overload and can be reassured. However, a careful step by step strategy at the clinical and genetic levels may allow to correctly identify those patients deserving further investigation. First, clinical examination and the assessment of iron parameters (SF and TS) allow identifying C282Y heterozygotes with an abnormal iron status. Once extrinsic factors such as heavy alcohol intake, virus or a dysmetabolic syndrome have been excluded, MRI is very useful to authenticate a high liver iron content. Second, HFE genotype must first exclude the presence of the H63D mutation. Compound heterozygozity for C282Y and H63D, a very widespread condition in our area, is usually associated with mild iron overload. Third, HFE sequencing can be undertaken and may identify new HFE variants as described here. The two novel mutations, a frameshift modifying the composition and the length of the C terminal end of the HFE protein and a substitution located at the last base of an exon, are likely to lead to an impaired function of HFE in association with the C282Y mutant. However, it is noteworthy that three of the four patients were diagnosed relatively late, after the 4th decade, as it is the case for C282Y homozygotes. Three further unrelated patients are currently under investigation in our laboratory for a similar clinical presentation. Finally, it can be noted that in those patients who will not have a HFE gene mutant identified, analysis of other genes implicated in iron overload must be performed to search for digenism or multigenism. None of our investigated patients had an additional gene abnormality.


2003 ◽  
Vol 49 (12) ◽  
pp. 1981-1988 ◽  
Author(s):  
Giorgio Biasiotto ◽  
Silvana Belloli ◽  
Giuseppina Ruggeri ◽  
Isabella Zanella ◽  
Gianmario Gerardi ◽  
...  

Abstract Background: Hereditary hemochromatosis is a recessive disorder characterized by iron accumulation in parenchymal cells, followed by organ damage and failure. The disorder is mainly attributable to the C282Y and H63D mutations in the HFE gene, but additional mutations in the HFE, transferrin receptor 2 (TfR2), and hepcidin genes have been reported. The copresence of mutations in different genes may explain the phenotypic heterogeneity of the disorder and its variable penetrance. Methods: We used denaturing HPLC (DHPLC) for rapid DNA scanning of the HFE (exons 2, 3, and 4), hepcidin, and TfR2 (exons 2, 4 and 6) genes in a cohort of 657 individuals with altered indicators of iron status. Results: DHPLC identification of C282Y and H63D HFE alleles was in perfect agreement with the restriction endonuclease assay. Fourteen DNA samples were heterozygous for the HFE S65C mutation. In addition, we found novel mutations: two in HFE (R66C in exon 2 and R224G in exon 4), one in the hepcidin gene (G71D), and one in TfR2 (V22I), plus several intronic or silent substitutions. Six of the seven individuals with hepcidin or TfR2 coding mutations carried also HFE C282Y or S65C mutations. Conclusion: DHPLC is an efficient method for mutational screening for the genes involved in hereditary hemochromatosis and for the study of their copresence.


2013 ◽  
Vol 110 (07) ◽  
pp. 76-82 ◽  
Author(s):  
Ziqiang Yu ◽  
Lijuan Cao ◽  
Wei Zhang ◽  
Xia Bai ◽  
Changgeng Ruan ◽  
...  

SummaryCongenital afibrinogenaemia is a rare autosomal recessive disorder caused by various mutations within the fibrinogen genes FGA, FGB and FGG. Ins/del mutations in FGB are extremely rare. We report a patient with afibrinogenaemia who suffered from umbilical cord bleeding and repeated bleeding episodes. His plasma fibrinogen levels could not be detected using the Clauss method and immunological methods. Molecular analyses revealed homozygosity in a novel four bases insertion in codon 40 of FGB exon 2 (g. 2833_2834 ins GTTT), which resulted in a truncated 50-residue polypeptide that contained 11 exceptional abnormal residues. In the transient expression experiments, mutant fibrinogen could be detected at higher level than wild-type fibrinogen in COS-7 cell lysates but not in culture media. These results suggest that the homozygous mutation in FGB could be responsible for congenital afibrinogenaemia in this patient. This frameshift mutation could impair fibrinogen assembly and secretion without influencing the protein synthesis.


Blood ◽  
2001 ◽  
Vol 97 (9) ◽  
pp. 2555-2560 ◽  
Author(s):  
Antonella Roetto ◽  
Angela Totaro ◽  
Alberto Piperno ◽  
Antonio Piga ◽  
Filomena Longo ◽  
...  

Abstract Hereditary hemochromatosis usually results from C282Y homozygosity in the HFE gene on chromosome 6p. Recently, a new type of hemochromatosis (HFE3) has been characterized in 2 unrelated Italian families with a disorder linked to 7q. Patients with HFE3 have transferrin receptor 2 (TFR2) inactivated by a homozygous nonsense mutation (Y250X). Here the identification of 2 newTFR2 mutations is reported. In a large inbred family from Campania, a frameshift mutation (84-88 insC) in exon 2 that causes a premature stop codon (E60X) is identified. In a single patient with nonfamilial hemochromatosis, a T→A transversion (T515A), which causes a Methionine→Lysine substitution at position 172 of the protein (M172K), has been characterized. TFR2 gene gives origin to 2 alternatively spliced transcripts—the α-transcript, which may encode a transmembrane protein, and the β-transcript, a shorter, possibly intracellular variant. Based on their positions, the effects of the identified mutations on the 2 TFR2 forms are expected to differ. Y250X inactivates both transcripts, whereas E60X inactivates only the α-form. M172K has a complex effect: it causes a missense in the α-form, but it may also prevent the β-form production because it affects its putative initiation codon. Analysis of the clinical phenotype of 13 HFE3 homozygotes characterized at the molecular level has shown a variable severity, from nonexpressing patients to severe clinical complications. The identification of new mutations of TFR2 confirms that this gene is associated with iron overload and offers a tool for molecular diagnosis in patients without HFE mutations.


2018 ◽  
Vol 99 (6) ◽  
pp. 998-1003
Author(s):  
A V Solov’eva ◽  
O V Kodyakova ◽  
I N Nikitina ◽  
N P Fomenko ◽  
D R Rakita

The article presents a clinical case demonstrating the difficulties of timely diagnosis of hereditary hemochromatosis, presents data on modern diagnosis and approaches to the treatment of the disease according to existing clinical guidelines. The described clinical case of hereditary hemochromatosis is associated with a homozygous mutation of C282Y in HFE gene in a 58-year-old patient and his twin brother. Initially, signs of iron deposition in the liver were found on MRI of the abdominal cavity. In laboratory analyses, the patient was found to have an increased level of serum iron - 40 µmol/l and ferritin - 1340 ng/ml. Subsequently, the investigation of HFE gene mutations was carried out and a mutation of C282Y in homozygous form (genotype A/A) was found, which is a molecular genetic confirmation of hereditary hemochromatosis of type 1. At the same time, the patient's twin brother at the targeted examination had the serum iron level of 36 µmol/l, the ferritin level of 600 ng/ml, and also the mutation of HFE gene, the allelic variant of A/A. The results of liver fibroelastometry of the patient correlate with the degree of fibrosis F1 by Metavir scale. Timely started therapeutic phlebotomies led to improved clinical and laboratory parameters of iron metabolism while maintaining normal levels of red blood cells and hemoglobin.


Author(s):  
Hasan Akduman ◽  
Dilek Dilli ◽  
Serdar Ceylaner

AbstractCongenital glucose-galactose malabsorption (CGGM) is an autosomal recessive disorder originating from an abnormal transporter mechanism in the intestines. It was sourced from a mutation in the SLC5A1 gene, which encodes a sodium-dependent glucose transporter. Here we report a 2-day-old girl with CGGM who presented with severe hypernatremic dehydration due to diarrhea beginning in the first hours of life. Mutation analysis revealed a novel homozygous mutation NM_000343.3 c.127G > A (p.Gly43Arg) in the SLC5A1 gene. Since CGGM can cause fatal diarrhea in the early neonatal period, timely diagnosis of the disease seems to be essential.


2021 ◽  
Vol 79 (1) ◽  
pp. 25-30
Author(s):  
Emanuela Maderna ◽  
Silvia Visonà ◽  
Vittorio Bolcato ◽  
Veronica Redaelli ◽  
Paola Caroppo ◽  
...  

Nasu-Hakola disease is a rare autosomal recessive disorder associated to mutations in TREM2 and DAP12 genes, neuropathologically characterized by leukoencephalopathy with axonal spheroids. We report the neuropathologic findings of a 51-year-old female with a homozygous mutation (Q33X) of TREM2 gene. Beside severe cerebral atrophy and hallmarks of Nasu-Hakola disease, significant Alzheimer’s disease lesions were present. Neurofibrillary changes showed an atypical topographic distribution being severe at spots in the neocortex while sparing the mesial temporal structures. Our finding suggests that TREM2 genetic defects may favor Alzheimer’s disease pathology with neurofibrillary changes not following the hierarchical staging of cortical involvement identified by Braak.


1998 ◽  
Vol 95 (5) ◽  
pp. 2492-2497 ◽  
Author(s):  
X. Y. Zhou ◽  
S. Tomatsu ◽  
R. E. Fleming ◽  
S. Parkkila ◽  
A. Waheed ◽  
...  

2002 ◽  
Vol 122 (3) ◽  
pp. 789-795 ◽  
Author(s):  
Michael Steiner ◽  
Kenneth Ocran ◽  
Janine Genschel ◽  
Patrick Meier ◽  
Helga Gerl ◽  
...  

2004 ◽  
Vol 42 (4) ◽  
pp. 824-832 ◽  
Author(s):  
A.A. Kokhanovsky ◽  
W. von Hoyningen-Huene ◽  
H. Bovensmann ◽  
J.P. Burrows

Sign in / Sign up

Export Citation Format

Share Document