scholarly journals Remote Inflammatory Preconditioning Alleviates Lipopolysaccharide-Induced Acute Lung Injury via Inhibition of Intrinsic Apoptosis in Rats

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yong Liu ◽  
Jiahang Xu ◽  
Liang Zhao ◽  
Jing Cheng ◽  
Baojun Chen

Background. Acute lung injury (ALI) always leads to severe inflammation. As inflammation and oxidative stress are the common pathological basis of endotoxin-induced inflammatory injury and ischemic reperfusion injury (IRI), we speculate that remote ischemic preconditioning (RIPC) can be protective for ALI when used as remote inflammatory preconditioning (RInPC). Method. A total of 21 Sprague-Dawley rats were used for the animal experiments. Eighteen rats were equally and randomly divided into the control (NS injection), LPS (LPS injection), and RInPC groups. The RInPC was performed prior to the LPS injection via tourniquet blockage of blood flow to the right hind limb and adopted three cycles of 5 min tying followed by 5 min untying. Animals were sacrificed 24 hours later. There were 2 rats in the LPS group and 1 in the RInPC group who died before the end of the experiment. Supplementary experiments in the LPS and RInPC groups were conducted to ensure that 6 animals in each group reached the end of the experiment. Results. In the present study, we demonstrated that the RInPC significantly attenuated the LPS-induced ALI in rats. Apoptotic cells were reduced significantly by the RInPC, with the simultaneous improvement of apoptosis-related proteins. Reduction of MPO and MDA and increasing of SOD activity were found significantly improved by the RInPC. Increasing of TNF-α, IL-1β, and IL-6 induced by the LPS was inhibited, while IL-10 was significantly increased by RInPC, compared to the LPS group. Conclusion. RInPC could inhibit inflammation and attenuate oxidative stress, thereby reducing intrinsic apoptosis and providing lung protection in the LPS-induced ALI in rats.

2020 ◽  
Vol 34 ◽  
pp. 205873842095494
Author(s):  
Zhe Yang ◽  
Qin Yin ◽  
Opeyemi Joshua Olatunji ◽  
Yan Li ◽  
Shu Pan ◽  
...  

Introduction: Alpha-mangostin (MAN) possesses a wide variety of pharmacological effects. In this study, we investigated its effect on cholinergic anti-inflammatory pathway (CAP), and tested if CAP regulation was involved in the therapeutic action on acute lung injury (ALI). Methods: Male Sprague Dawley rats were pre-treated with MAN (40 mg/kg) for 3 days and ALI was induced with an intraperitoneal injection of lipopolysaccharide (LPS). Certain rats received monolateral vagotomy or sham surgery. The effects on inflammatory reactions and relevant pathways in ALI rats or LPS pre-treated RAW 264.7 cells were investigated by histological, immunohistochemical, immunoblotting, RT-qPCR, and immunofluorescence assays, while levels of proinflammatory cytokines, acetylcholine (Ach) and the enzymatic activity of acetylcholinesterase (AchE) were determined by corresponding quantitative kits. Results: Oral administration of MAN reduced the severity of ALI, while vagotomy surgery antagonized this effect. MAN restored the decline in α7 nicotinic acetylcholine receptor (α7nAchR) in the lungs of ALI rats, and promoted the expression of α7nAchR and choline acetyltransferase (CHAT) in RAW 264.7 cells. Although AchE expression was barely affected by MAN at 5 μg/ml, its catalytic activity was reduced by almost 95%. Extracellular rather than intracellular Ach was notably raised shortly after MAN treatment. Furthermore, MAN at 5 μg/ml effectively inhibited LPS-induced increase in phosphorylation and nucleus translocation of p65 subunit, and secretion of TNF-α and IL-1β, which was then offset by methyllycaconitine citrate hydrate. Conclusion: MAN activated CAP by increasing peripheral Ach and up-regulating α7nAchR expression, which eventually led to NF-κB inhibition and remission of acute inflammations.


2020 ◽  
Vol 21 (8) ◽  
pp. 2810
Author(s):  
Xinling Song ◽  
Jianjun Zhang ◽  
Jian Li ◽  
Le Jia

The present work investigated the anti-inflammatory, antioxidant, and lung protection effects of acetylated Pleurotus geesteranus polysaccharides (AcPPS) on acute lung injury (ALI) mice. The acetylation of AcPPS was successfully shown by the peaks of 1737 cm−1 and 1249 cm−1 by FTIR. The animal experiments demonstrated that lung damage can be induced by zymosan. However, the supplementation of AcPPS had potential effects on reducing lung index, remitting inflammatory symptoms (TNF-α, IL-1β, and IL-6), inhibiting NF-κB signal pathway based on up-regulating the level of IκBα and down-regulating p-IκBα level by Western blotting and immunofluorescence assay, preventing oxidative stress (ROS, SOD, GSH-Px, CAT, T-AOC, and MDA), reducing lipid accumulation (TC, TG, LDL-C, HDL-C, and VLDL-C), and alleviating lung functions by histopathologic observation. These results demonstrated that AcPPS might be suitable for natural food for prevention or remission in ALI.


2014 ◽  
Vol 31 (4) ◽  
pp. 233-243
Author(s):  
Ivana Stojanović ◽  
Srđan Ljubisavljević ◽  
Ivana Stevanović ◽  
Slavica Stojnev ◽  
Radmila Pavlović ◽  
...  

Summary The aim of this study was to investigate the exogenous agmatine influence on nitrosative and oxidative stress parameters in acute phase of multiple sclerosis (MS) experimental model, experimental autoimmune encephalomyelitis (EAE). EAE was induced by subcutaneous injection of myelin basic protein (50 μg per animal). Sprague-Dawley rats were divided into five groups: I group - (CG), treated by PBS (i.p.), II group - (EAE), III group - (CFA), treated with Complete Freund’s adjuvant (0.2 ml subcutaneously), IV group - (EAE+AGM), treated by agmatine (75 mg/kg bw i.p.) upon EAE induction and V group - (AGM), received only agmatine in the same dose. The animals were treated every day during experiment - from day 0 to 15, and clinically scored every day. They were sacrificed on day 16 from MBP application. NO2+NO3, S-nitrosothiols (RSNO), malondyaldehide (MDA) and reduced glutathione (GSH) concentrations and superoxide dismutase (SOD) activity were determined in rat whole encephalitic mass (WEM) and cerebellum homogenates. Agmatine exerted strong protective effects on EAE clinical symptoms (p<0.05). In EAE brain homogenates, NO2+NO3, RSNO and MDA concentrations were increased compared to CG values. Agmatine treatment diminished NO2+NO3, RSNO and MDA levels in EAE animals (p<0.05). In EAE rats, GSH level and SOD activity were decreased compared to CG values, but agmatine treatment increased both parameters compared to EAE untreated animals (p<0.05). Immunohistochemical staining supported the clinical and biochemical findings in all groups. The CNS changes in EAE are successfully supressed by agmatine application, which could be the the new aspect of the neuroprotective effects of agmatine.


2007 ◽  
Vol 292 (1) ◽  
pp. L144-L153 ◽  
Author(s):  
Daisuke Okutani ◽  
Bing Han ◽  
Marco Mura ◽  
Thomas K. Waddell ◽  
Shaf Keshavjee ◽  
...  

Pentraxin 3 (PTX3) is an acute-phase protein, which can be produced by a variety of tissue cells at the site of infection or inflammation. It plays an important role in innate immunity in the lung and in mediating acute lung injury. The aim of this study was to determine the effect of mechanical ventilation on PTX3 expression in multiple lung injury models. Male Sprague-Dawley rats were challenged with intravenous injection of lipopolysaccharide (LPS) or hemorrhage followed by resuscitation (HS). The animals were then subjected to either relatively higher (12 ml/kg) or lower (6 ml/kg, positive end-expiratory pressure of 5 cmH2O) volume ventilation for 4 h. High-volume ventilation significantly enhanced PTX3 expression in the lung, either alone or in combination with LPS or hemorrhage. A significant increase of PTX3 immunohistochemistry staining in the lung was seen in all injury groups. The PTX3 expression was highly correlated with the severity of lung injury determined by blood gas, lung elastance, and wet-to-dry ratio. To determine the effects of HS, LPS, or injurious ventilation (25 ml/kg) alone on PTX3 expression, another group of rats was studied. Injurious ventilation significantly damaged the lung and increased PTX3 expression. A local expression of PTX3 induced by high-volume ventilation, either alone or in combination with other pathological conditions, suggests that it may be an important mediator in ventilator-induced lung injury.


2020 ◽  
Vol 8 (S1) ◽  
Author(s):  
Laura Chimenti ◽  
Luis Morales-Quinteros ◽  
Ferranda Puig ◽  
Marta Camprubi-Rimblas ◽  
Raquel Guillamat-Prats ◽  
...  

Abstract Background The animal experimental counterpart of human acute respiratory distress syndrome (ARDS) is acute lung injury (ALI). Most models of ALI involve reproducing the clinical risk factors associated with human ARDS, such as sepsis or acid aspiration; however, none of these models fully replicates human ARDS. Aim To compare different experimental animal models of ALI, based on direct or indirect mechanisms of lung injury, to characterize a model which more closely could reproduce the acute phase of human ARDS. Materials and methods Adult male Sprague-Dawley rats were subjected to intratracheal instillations of (1) HCl to mimic aspiration of gastric contents; (2) lipopolysaccharide (LPS) to mimic bacterial infection; (3) HCl followed by LPS to mimic aspiration of gastric contents with bacterial superinfection; or (4) cecal ligation and puncture (CLP) to induce peritonitis and mimic sepsis. Rats were sacrificed 24 h after instillations or 24 h after CLP. Results At 24 h, rats instilled with LPS or HCl-LPS had increased lung permeability, alveolar neutrophilic recruitment and inflammatory markers (GRO/KC, TNF-α, MCP-1, IL-1β, IL-6). Rats receiving only HCl or subjected to CLP had no evidence of lung injury. Conclusions Rat models of ALI induced directly by LPS or HCl-LPS more closely reproduced the acute phase of human ARDS than the CLP model of indirectly induced ALI.


2016 ◽  
Vol 64 (1) ◽  
Author(s):  
Yuan Zong ◽  
Huali Zhang

Sepsis is a serious medical problem that is one of the main causes of high mortality in intensive care units. Fifty percent of patients with severe sepsis will develop acute lung injury (ALI). Amentoflavone (AMF) is a polyphenolic compound possessing potent anti-inflammatory activities. The present study was designed to explore the protective effects of AMF against ALI in CLP-induced septic rats. The results showed that AMF administration protected against septic ALI, as reflected by marked amelioration of histological injury of lung tissues and decrease of pulmonary edema in CLP-treated rats. AMF ameliorated CLP-induced increase of systemic and lung TNF-α and IL-1β and the binding activity of p65 NF-κB, indicating the inhibition of inflammation induced by CLP. Moreover, AMF prevented CLP-induced oxidative stress, as evidenced by increase of oxygen consumption rate, decrease of TBARS content, increase of SOD activity and GSH level in lung tissue of CLP-treated rats. CLP resulted in significant decrease of mRNA expression of Nrf2 and GCLc, which was inhibited by AMF. AMF-induced protective effects on ALI, inflammation, and oxidative stress were inhibited by lentivirus-mediated shRNA of Nrf2 and buthionine sulphoximine (BSO), an inhibitor of GSH synthesis. AMF increased Nrf2-binding activity with GCLc promoters in lung tissue of CLP-treated rats. The results suggested that AMF protected against ALI in septic rats through upregulation of Nrf2-GCLc signaling, enhancement of GSH antioxidant defense, reduction of oxidative stress and final amelioration of inflammation and histological injury of lung. The data provide new therapeutic options for the treatment of sepsis-associated ALI.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Pin-Kuei Fu ◽  
Chieh-Liang Wu ◽  
Tung-Hu Tsai ◽  
Ching-Liang Hsieh

Paeonol is an active component of Moutan Cortex Radicis and is widely used as an analgesic, antipyretic, and anti-inflammatory agent in traditional Chinese medicine. We wanted to determine the role of paeonol in treating adult respiratory distress syndrome (ARDS). We established an acute lung injury (ALI) model in Sprague-Dawley rats, which was similar to ARDS in humans, using intratracheal administration of lipopolysaccharide (LPS). The intraperitoneal administration of paeonol successfully reduced histopathological scores and attenuated myeloperoxidase-reactive cells as an index of polymorphonuclear neutrophils infiltration and also reduces inducible nitric oxide synthase expression in the lung tissue, at 16 h after LPS administration. In addition, paeonol reduced proinflammatory cytokines in bronchoalveolar lavage fluid, including tumor-necrosis factor-α, interleukin-1β, interleukin-6, and plasminogen-activated inhibition factor-1. These results indicated that paeonol successfully attenuates inflammatory and coagulation reactions to protect against ALI.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Shulin Liu ◽  
Kan Liu ◽  
Qiang Sun ◽  
Wenwu Liu ◽  
Weigang Xu ◽  
...  

Exposure to paraquat leads to acute lung injury and oxidative stress is widely accepted as a contributor to paraquat-induced acute lung injury. Recent studies have reported that consumption of water with dissolved molecular hydrogen to a saturated level (hydrogen water) prevents oxidative stress-induced diseases. Here, we investigated whether consumption of saturated hydrogen saline protects rats against paraquat-induced acute lung injury. Adult male Sprague-Dawley (SD) rats were randomly divided into four groups: Control group; hydrogen water-only group (HW group); paraquat-only group (PQ group); paraquat and hydrogen water group (PQ  +  HW group). The rats in control group and HW group drank pure water or hydrogen water; the rats in PQ group and PQ  +  HW group were intraperitonealy injected with paraquat (35 mg/kg) and then provided pure water or hydrogen water. Both biochemical and histological lung alterations were measured. The results showed that hydrogen water ameliorated these alterations, demonstrating that hydrogen water alleviated paraquat-induced acute lung injury possibly by inhibition of oxidative damage.


2017 ◽  
Vol 7 (2) ◽  
pp. 148-152
Author(s):  
Liwei Li ◽  
Changtai Zhu ◽  
Ye Yuan ◽  
Zhiqiang Li

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Liying Zhan ◽  
Yuan Zhang ◽  
Wating Su ◽  
Qiongxia Zhang ◽  
Rong Chen ◽  
...  

Patients with diabetes are vulnerable to myocardial ischemia reperfusion (IR) injury, which may also induce acute lung injury (ALI) due to overaccumulation of reactive oxygen species (ROS) and inflammation cytokine in circulation. Despite autophagy plays a significant role in diabetes and pulmonary IR injury, the role of autophagy in ALI secondary to myocardial IR in diabetes remains largely elusive. We aimed to investigate pulmonary autophagy status and its roles in oxidative stress and inflammation reaction in lung tissues from diabetic rats subjected to myocardial IR. Control or diabetic rats were either treated with or without autophagy inducer rapamycin (Rap) or autophagy inhibitor 3-methyladenine (3-MA) before myocardial IR, which was achieved by occluding the left anterior descending coronary artery for 30 min and followed by reperfusion for 120 min. Diabetic rats subjected to myocardial IR showed more serious ALI with higher lung injury score and WET/DRY ratio and lower PaO2 as compared with control rats, accompanied with impaired autophagy indicated by reduced LC-3II/LC-3I ratio and Beclin-1 expression, decreased superoxide dismutase (SOD) activity, and increased 15-F2t-Isoprostane formation in lung tissues, as well as increased levels of leukocyte count and proinflammatory cytokines in BAL fluid. Improving autophagy with Rap significantly attenuated all these changes, but the autophagy inhibitor 3-MA exhibited adverse or opposite effects as Rap. In conclusion, diabetic lungs are more vulnerable to myocardial IR, which are involved in impaired autophagy. Improving autophagy could attenuate ALI induced by myocardial IR in diabetic rats, possibly through inhibiting inflammatory reaction and oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document