scholarly journals Risk Evaluation Method of Import and Export Goods Based on Fuzzy Reasoning and DeepFM

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Yuanyuan Xu ◽  
Huijuan Fang ◽  
Jiliang Luo ◽  
Jianan He ◽  
Tao Li ◽  
...  

At present, the inspection mode of China's import ports is generally manual based on experience, or random inspection by the document review system according to a preset random inspection ratio. In order to improve the detection rate of unqualified goods and realize the best allocation of limited human and material resources of inspection and quarantine institutions, a method composed of fuzzy reasoning, deep neural network, and factorization machine (DeepFM) was proposed for the intelligent evaluation of risk sources of imported goods. Fuzzy reasoning is used to realize the fuzzy normalization of the dataset samples, the DeepFM deep neural network is finally used for training and learning to classify and evaluate the risks of goods. Results of experimental tests on a specific customs import and export dataset verify the effectiveness of the proposed research method.

2021 ◽  
Vol 12 ◽  
Author(s):  
Yan Cheng ◽  
Yingying Cai ◽  
Haomai Chen ◽  
Zhuang Cai ◽  
Gang Wu ◽  
...  

The evaluation of the learning process is an effective way to realize personalized online learning. Real-time evaluation of learners’ cognitive level during online learning helps to monitor learners’ cognitive state and adjust learning strategies to improve the quality of online learning. However, most of the existing cognitive level evaluation methods use manual coding or traditional machine learning methods, which are time-consuming and laborious. They cannot fully mine the implicit cognitive semantic information in unstructured text data, making the cognitive level evaluation inefficient. Therefore, this study proposed the bidirectional gated recurrent convolutional neural network combined with an attention mechanism (AM-BiGRU-CNN) deep neural network cognitive level evaluation method, and based on Bloom’s taxonomy of cognition objectives, taking the unstructured interactive text data released by 9167 learners in the massive open online course (MOOC) forum as an empirical study to support the method. The study found that the AM-BiGRU-CNN method has the best evaluation effect, with the overall accuracy of the evaluation of the six cognitive levels reaching 84.21%, of which the F1-Score at the creating level is 91.77%. The experimental results show that the deep neural network method can effectively identify the cognitive features implicit in the text and can be better applied to the automatic evaluation of the cognitive level of online learners. This study provides a technical reference for the evaluation of the cognitive level of the students in the online learning environment, and automatic evaluation in the realization of personalized learning strategies, teaching intervention, and resources recommended have higher application value.


2018 ◽  
Vol 8 (11) ◽  
pp. 2332 ◽  
Author(s):  
Hung Nguyen ◽  
Cheol-Hong Kim ◽  
Jong-Myon Kim

Exact evaluation of the degradation levels in bearing defects is one of the most essential works in bearing condition monitoring. This paper proposed an efficient evaluation method using a deep neural network (DNN) for correct prediction of degradation levels of bearings under different crack size conditions. An envelope technique was first used to capture the characteristic fault frequencies from acoustic emission (AE) signals of bearing defects. Accordingly, a health-related indicator (HI) calculation was performed on the collected envelope power spectrum (EPS) signals using a Gaussian window method to estimate the fault severities of bearings that served as an appropriate dataset for DNN training. The proposed DNN was then trained for effective prediction of bearing degradation using the Adam optimization-based backpropagation algorithm, in which the synaptic weights were optimally initialized by the Xavier initialization method. The effectiveness of the proposed degradation prediction approach was evaluated through different crack size experiments (3, 6, and 12 mm) of bearing faults.


Author(s):  
David T. Wang ◽  
Brady Williamson ◽  
Thomas Eluvathingal ◽  
Bruce Mahoney ◽  
Jennifer Scheler

Author(s):  
P.L. Nikolaev

This article deals with method of binary classification of images with small text on them Classification is based on the fact that the text can have 2 directions – it can be positioned horizontally and read from left to right or it can be turned 180 degrees so the image must be rotated to read the sign. This type of text can be found on the covers of a variety of books, so in case of recognizing the covers, it is necessary first to determine the direction of the text before we will directly recognize it. The article suggests the development of a deep neural network for determination of the text position in the context of book covers recognizing. The results of training and testing of a convolutional neural network on synthetic data as well as the examples of the network functioning on the real data are presented.


Sign in / Sign up

Export Citation Format

Share Document