scholarly journals Wireless Network Sensing of Urban Surface Water Environment Based on Clustering Algorithm

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Qichao Zhao ◽  
Xiufeng Yang ◽  
Xuxin Dong ◽  
Huairui Li

To improve the wireless sensing image extraction technology of urban surface water environment, a regional FCM clustering method combined with water index was proposed in this paper. The normalized water index (NDWI) was obtained by calculating the fusion multispectral wireless sensing image. Through the combination with normalized water index, fuzzy clustering results were obtained by RFCM algorithm proposed in this paper. The optimal threshold was selected to defuzzify the fuzzy clustering results, and finally, the extraction results of urban surface water were obtained. The accuracy of the proposed algorithm was compared with that of the traditional surface water extraction algorithm. The experimental results showed that the size of different neighborhood regions affected the water extraction accuracy. In W city, the kappa coefficient of MFCM16 was 0.41% higher than that of MFCM8, and the overall classification accuracy of MFCM16 was 1.33% higher than that of MFCM. In G city area, the kappa coefficient of MFCM16 was 1.81% higher than that of MFCM8, and the overall classification accuracy of MFCM16 was 1.7% higher than that of MFCM. Comparing the RFCM algorithm with other algorithms, the RFCM algorithm obtained the best experimental results, to reduce the “salt-and-pepper phenomenon” effect.

2018 ◽  
Vol 10 (11) ◽  
pp. 1704 ◽  
Author(s):  
Wei Wu ◽  
Qiangzi Li ◽  
Yuan Zhang ◽  
Xin Du ◽  
Hongyan Wang

Urban surface water mapping is essential for studying its role in urban ecosystems and local microclimates. However, fast and accurate extraction of urban water remains a great challenge due to the limitations of conventional water indexes and the presence of shadows. Therefore, we proposed a new urban water mapping technique named the Two-Step Urban Water Index (TSUWI), which combines an Urban Water Index (UWI) and an Urban Shadow Index (USI). These two subindexes were established based on spectral analysis and linear Support Vector Machine (SVM) training of pure pixels from eight training sites across China. The performance of the TSUWI was compared with that of the Normalized Difference Water Index (NDWI), High Resolution Water Index (HRWI) and SVM classifier at twelve test sites. The results showed that this method consistently achieved good performance with a mean Kappa Coefficient (KC) of 0.97 and a mean total error (TE) of 2.28%. Overall, classification accuracy of TSUWI was significantly higher than that of the NDWI, HRWI, and SVM (p-value < 0.01). At most test sites, TSUWI improved accuracy by decreasing the TEs by more than 45% compared to NDWI and HRWI, and by more than 15% compared to SVM. In addition, both UWI and USI were shown to have more stable optimal thresholds that are close to 0 and maintain better performance near their optimum thresholds. Therefore, TSUWI can be used as a simple yet robust method for urban water mapping with high accuracy.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253209
Author(s):  
Jianfeng Li ◽  
Biao Peng ◽  
Yulu Wei ◽  
Huping Ye

To realize the accurate extraction of surface water in complex environment, this study takes Sri Lanka as the study area owing to the complex geography and various types of water bodies. Based on Google Earth engine and Sentinel-2 images, an automatic water extraction model in complex environment(AWECE) was developed. The accuracy of water extraction by AWECE, NDWI, MNDWI and the revised version of multi-spectral water index (MuWI-R) models was evaluated from visual interpretation and quantitative analysis. The results show that the AWECE model could significantly improve the accuracy of water extraction in complex environment, with an overall accuracy of 97.16%, and an extremely low omission error (0.74%) and commission error (2.35%). The AEWCE model could effectively avoid the influence of cloud shadow, mountain shadow and paddy soil on water extraction accuracy. The model can be widely applied in cloudy, mountainous and other areas with complex environments, which has important practical significance for water resources investigation, monitoring and protection.


2020 ◽  
Vol 12 (23) ◽  
pp. 3875
Author(s):  
Xufeng Wei ◽  
Wenbo Xu ◽  
Kuanle Bao ◽  
Weimin Hou ◽  
Jia Su ◽  
...  

Water body extraction can help eco-environmental policymakers to intuitively grasp surface water resources. Remote sensing technology can accurately and quickly extract surface water information, which is of great significance for monitoring surface water changes. Fengyun satellite images have the advantages of high time resolution and multispectral bands. This provides important image data suitable for high-frequency surface water monitoring. Based on Fengyun 3 medium resolution spectral imager (FY-3/MERSI) data, 7 methods were applied in this study, which include single-band threshold method, water body index method, knowledge decision tree classification method, supervised classification method, unsupervised classification method, spectral matching based on discrete particle swarm optimization (SMDPSO), and improved spectral matching based on discrete particle swarm optimization with linear feature enhancement (SMDPSO+LFE). These methods were used to extract the land surface water of Poyang Lake, check the samples from the Landsat image with similar times to the FY-3 images, and calculate the classification accuracy via the confusion matrix. The results showed that the overall classification accuracy (OA) of the SMDPSO+LFE is 97.64%, and the Kappa coefficient is 0.95. To analyze the stability of the surface water extracted by SMDPSO+LFE in different regions, this paper selected eight test sites with different surface water types, landscapes, and terrains to extract surface water. Based on an analysis of the land surface water results at the eight test sites, every OA in the eight sites was higher than 94.5%, the Kappa coefficient was greater than 0.88. In conclusion, the SMDPSO+LFE is found to be the most suitable method among the 7 methods and effectively distinguish between different surface water bodies and backgrounds with good stability.


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2769 ◽  
Author(s):  
Tri Dev Acharya ◽  
Anoj Subedi ◽  
Dong Ha Lee

With over 6000 rivers and 5358 lakes, surface water is one of the most important resources in Nepal. However, the quantity and quality of Nepal’s rivers and lakes are decreasing due to human activities and climate change. Despite the advancement of remote sensing technology and the availability of open access data and tools, the monitoring and surface water extraction works has not been carried out in Nepal. Single or multiple water index methods have been applied in the extraction of surface water with satisfactory results. Extending our previous study, the authors evaluated six different machine learning algorithms: Naive Bayes (NB), recursive partitioning and regression trees (RPART), neural networks (NNET), support vector machines (SVM), random forest (RF), and gradient boosted machines (GBM) to extract surface water in Nepal. With three secondary bands, slope, NDVI and NDWI, the algorithms were evaluated for performance with the addition of extra information. As a result, all the applied machine learning algorithms, except NB and RPART, showed good performance. RF showed overall accuracy (OA) and kappa coefficient (Kappa) of 1 for the all the multiband data with the reference dataset, followed by GBM, NNET, and SVM in metrics. The performances were better in the hilly regions and flat lands, but not well in the Himalayas with ice, snow and shadows, and the addition of slope and NDWI showed improvement in the results. Adding single secondary bands is better than adding multiple in most algorithms except NNET. From current and previous studies, it is recommended to separate any study area with and without snow or low and high elevation, then apply machine learning algorithms in original Landsat data or with the addition of slopes or NDWI for better performance.


2022 ◽  
Author(s):  
tao su ◽  
Jian Wang ◽  
Xingyuan Cui ◽  
Lei Wang

Abstract Landsat remote sensing image is a widely used data source in water remote sensing. Normalized difference water index (NDWI), modified normalized difference water index (MNDWI) and automated water extraction index (AWEI) are commonly used water extraction classifiers. In the process of their application, because the threshold varies with the location and time of the research object, how to select the threshold with the highest classification accuracy is a time-consuming and challenging task. The purpose of this study was to explore a method that can not only improve the accuracy of water extraction, but also provide a fixed threshold, and can meet the requirements of automatic water extraction. We introduced the local spatial auto correlation statistics and calculate the Getis-Ord Gi* index to have hot spot analysis. Comparative analysis showed that the accuracy of water classification had been greatly improved through hot spot analysis. AWEIsh classifier had the best classification accuracy under the condition of INVERSE_DISTANCE neighborhood rule and Z>1.96, and the accuracy changes least in different time, different location and different vegetation coverage images. Therefore, in the process of regional water extraction, hot spot analysis method was effective, which was helpful to improve the accuracy of water extraction.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2774
Author(s):  
Fang-Shii Ning ◽  
Yu-Chan Lee

Rivers in Taiwan are characterised by steep slopes and high sediment concentrations. Moreover, with global climate change, the dynamics of channel meandering have become complicated and frequent. The primary task of river governance and disaster prevention is to analyse river changes. Spectral water indices are mostly used for surface water estimation, which separates the water from the background based on a threshold value, but it can be challenging in the case of environmental noise. Edge detection uses a canny edge detector and mathematical morphology for extracting geometrical features from the image and effective edge detection. This study combined spectral water indices and mathematical morphology to capture water bodies based on downloaded remote sensing images. From the findings, this study summarised the applicability of various spectral water body indices to the surface water extraction of different river channel patterns in Taiwan. The normalised difference water index and the modified normalised difference water index are suitable for braided rivers, whereas the automated water extraction index is ideal for meandering rivers.


Sign in / Sign up

Export Citation Format

Share Document