scholarly journals Acrylonitrile-Styrene-Acrylate Particles with Different Microstructure for Improving the Toughness of Poly(styrene-co-acrylonitrile) Resin

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yuanying Zhang ◽  
Xuechun Zhang ◽  
Yongbin Cao ◽  
Jiachun Feng ◽  
Wuli Yang

Herein, acrylonitrile-styrene-acrylate copolymer (ASA) particles with different microstructure were synthesized by emulsion polymerization and then used for toughening poly(styrene-co-acrylonitrile) (SAN) resin. The structure of ASA particles was confirmed by FTIR. TEM results demonstrated that the particles with different morphologies of multilobe shape, complete core-shell and dumbbell shape were obtained depending on the cross-linker amount. It was found that the toughening efficiency reached the highest when the ASA particles had complete core-shell structure and the shell composition was close to that of the SAN matrix. It was ascribed to the fact that the complete shell layer and similar shell composition provided sufficient interfacial adhesion and transferred stress to induce larger matrix deformation, so that the notched impact strength increased accordingly. Moreover, the notched impact strength of SAN/ASA blend was improved without significantly sacrificing tensile strength when adding 30 wt% ASA particles with the size of around 400 nm. SEM results of the impact-fractured surfaces revealed that irregular fluctuation and numerous microvoids occurred. It was deduced that the toughening mechanism was attributed to the crazings and cavitation of particles. Therefore, this study paved a way of toughening the resin by adjusting the microstructure of the particles including morphology, composition, and size.

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Wei Kit Chee ◽  
Nor Azowa Ibrahim ◽  
Norhazlin Zainuddin ◽  
Mohd Faizal Abd Rahman ◽  
Buong Woei Chieng

Poly(lactic acid) (PLA)/poly(ε-caprolactone) (PCL) blends were prepared via melt blending technique. Glycidyl methacrylate (GMA) was added as reactive compatibilizer to improve the interfacial adhesion between immiscible phases of PLA and PCL matrices. Tensile test revealed that optimum in elongation at break of approximately 327% achieved when GMA loading was up to 3wt%. Slight drop in tensile strength and tensile modulus at optimum ratio suggested that the blends were tuned to be deformable. Flexural studies showed slight drop in flexural strength and modulus when GMA wt% increases as a result of improved flexibility by finer dispersion of PCL in PLA matrix. Besides, incorporation of GMA in the blends remarkably improved the impact strength. Highest impact strength was achieved (160% compared to pure PLA/PCL blend) when GMA loading was up to 3 wt%. SEM analysis revealed improved interfacial adhesion between PLA/PCL blends in the presence of GMA. Finer dispersion and smooth surface of the specimens were noted as GMA loading increases, indicating that addition of GMA eventually improved the interfacial compatibility of the nonmiscible blend.


RSC Advances ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 5722-5730 ◽  
Author(s):  
Le Zhai ◽  
Zhenxin Liu ◽  
Chen Li ◽  
Xiongwei Qu ◽  
Qingxin Zhang ◽  
...  

h-BN particles were used to fabricate cyanate ester/core–shell structured polyacrylic/BN composites. The impact strength and the thermal conductivity of the composites were simultaneously increased, which may be used in microelectronic packaging.


2007 ◽  
Vol 121-123 ◽  
pp. 1493-1496 ◽  
Author(s):  
Patchara Tasanatanachai ◽  
Rathanawan Magaraphan

One of weak point of PS/clay nanocomposite is the lack of interfacial adhesion between clay and polystyrene matrix. In this research, the radical sites on the clay surface were induced via the plasma technique. The optimum condition for this process was investigated and used to treat bentonite before grafting styrene on clay structure. The increase of basel-spacing of clay was not noticeable from XRD spectra, but the FT-IR spectra showed characteristic peak of polystyrene implied that the styrene grafting was occurred on the outer surface of the clay. The impact strength is quite improved, especially for the higher ratio of styrene/clay during the grafting step.


2013 ◽  
Vol 750-752 ◽  
pp. 820-823
Author(s):  
Zhen Yu Liu ◽  
Yu Zhu Xiong ◽  
Wen Jie Mei ◽  
Li Wang

(POE-g-MAH/OMMT) and (POE-g-MAH/SiO2) toughening particles of core-shell structure were prepared by ball grinding method and were used to modify toughness of PA6.The morphology of PA6 modified by these core-shell particles were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM),and were detected by mechanical performance test. The results show that both toughening particles could improved notch impact strength of PA6,and with toughening particle exceed 10%, composites notch impact strength is rapid increase.(POE-g-MAH/OMMT) particle of PA6 toughening effect is better than (POE-g-MAH/SiO2).When material under impact, OMMT produced slip effect in core-shell structure and SiO2 produced rolling effect.


2013 ◽  
Vol 781-784 ◽  
pp. 390-394
Author(s):  
Xiao Li Song ◽  
Ying Chen ◽  
Yu Zhi Xu ◽  
Chun Peng Wang

Polyacrylate microsphere with different core/shell ratio (mass ratio) were prepared by semi-continuous seed emulsion copolymerization using butyl acrylate (BA) and methyl methacrylate (MMA) as main monomers,which were used to toughen polylactic acid (PLA) after drying. The effect of core/shell ratio of polyacrylate toughening agent (ACR) on mechanical properties of PLA was studied. The results showed that when adding 8wt%ACR, the impact strength and elongation at break of PLA were both first increased and then decreased as increasing of core/shell ratio, while the tensile strength loss of PLA was little changed. It is found that the impact strength was increased about 24% than that of neat PLA as well as the elongation at break was increased from 2% to 12% when the ratio was 7/3, which was the best ratio.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Qinghuang Wang ◽  
Yongyue Luo ◽  
Chunfang Feng ◽  
Zhifeng Yi ◽  
Quanfang Qiu ◽  
...  

A highly performing natural rubber/silica (NR/SiO2) nanocomposite with a SiO2loading of 2 wt% was prepared by combining similar dissolve mutually theory with latex compounding techniques. Before polymerization, double bonds were introduced onto the surface of the SiO2particles with the silane-coupling agent. The core-shell structure silica-poly(methyl methacrylate), SiO2-PMMA, nanoparticles were formed by grafting polymerization of MMA on the surface of the modified SiO2particles via in situ emulsion, and then NR/SiO2nanocomposite was prepared by blending SiO2-PMMA and PMMA-modified NR (NR-PMMA). The Fourier transform infrared spectroscopy results show that PMMA has been successfully introduced onto the surface of SiO2, which can be well dispersed in NR matrix and present good interfacial adhesion with NR phase. Compared with those of pure NR, the thermal resistance and tensile properties of NR/SiO2nanocomposite are significantly improved.


Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 932 ◽  
Author(s):  
Siyuan Li ◽  
Yan Yang ◽  
Xiangjun Zha ◽  
Yicun Zhou ◽  
Wei Yang ◽  
...  

Nanostructured polyamide 12(PA12)/polyketone (PK) blends were fabricated by melt compounding. The nanoscale droplet and domain-in-domain morphologies depending on PK content were observed. When the content of PK was 10 vol%, the impact strength of the blend jumps from 6.8 to 111.9 kJ/m2 and further improved with an increasing content of PK. The toughening mechanism was found to be closely related with the morphology change from nanoscale droplet morphology to domain-in-domain morphology owing to the strong interfacial hydrogen bonding. The nanoscale morphology confinement and interfacial hydrogen bonding enhances the crystallization kinetics while lowers down the thermodynamic stability of the crystals. The toughening mechanisms were discussed based on these factors.


2010 ◽  
Vol 97-101 ◽  
pp. 1677-1680 ◽  
Author(s):  
Xiao Ming Sang ◽  
Peng Wu ◽  
Gui Xiang Hou ◽  
Shou Wu Yu

TiO2-g-Polystyrene(PS) nano-microspheres were prepared by grafted styrene monomer on the surface of nano-TiO2 particles via emulsion polymerization, and its surface and morphology were studied by Transmission electron microscopes(TEM), Fourier transform infrared spectroscopy(FTIR) and thermal gravimetric analysis(TGA). The results showed that the TiO2-g-PS nano-microsphere had a structure of sphericity composed of TiO2 and PS as core and shell respectively. The core-shell nanoparticles were subsequently used as filler in a PS matrix, and the impact strength of the TiO2-g-PS/PS composites were studied. The results showed that the impact strength of the composite material could be improved obviously, the maximum value of impacted strength of the TiO2-g-PS/PS was 1.75kJ/m2, which was 180% higher than that of pure PS. Drawing from the results, it could be confirmed that these core-shell TiO2-g-PS nanosphere fillers could toughen the PS matrix.


Sign in / Sign up

Export Citation Format

Share Document