scholarly journals Experimental Study on Stress Wave Propagation Crossing the Jointed Specimen with Different JRCs

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
S.N. Hong ◽  
H.B. Li ◽  
L.F. Rong

Most of the rock masses in the outer crust of the Earth are discontinuous. They are divided by joints, faults, fractures, etc. And those discontinuities, generally referred to as joints, greatly affect the property of the rock masses. The paper experimentally investigates the stress wave propagation crossing the jointed specimens. The tests were conducted on the split Hopkinson pressure bar (SHPB). The test specimens consist of two parts cast by cement mortar. Both parts have an irregular surface, and they were designed to match each other completely. The surfaces where two parts meet make an artificial joint. The surfaces of the joints were scanned by a three-dimensional scanner to obtain its actual topography and then to calculate the roughness of the surface, i.e., the joint roughness coefficient (JRC). A set of jointed specimens with JRC ranging from 0 to 20 were made and used in dynamic compression experiments. During the tests, signals were captured by strain gauges stuck on the incident and transmitted bars of the SHPB apparatus. The incident, reflected, and transmitted waves across the jointed specimens were obtained from the test records. We found out that more stress wave would transmit through the jointed specimen with larger JRC. Besides, collected data were processed to get the dynamic stress-strain relation of jointed specimens and the stress-closure curves of the joints. The results show that the joint increases the deformation of the specimen, and the stiffness of the jointed specimen would increase slightly when the joint is rougher.

Studies of the properties of materials at high strain rates by the split Hopkinson pressure bar suggest that most materials show a sharp increase in strain rate sensitivity at high rates. In this paper, analytical and numerical evidence is presented which shows that his apparent increase in the strain rate sensitivity reported in the literature may result from stress wave propagation effects present in the test. A one-dimensional analytical solution has been developed for a rate independent bi-linear material tested in a split Hopkinson pressure bar apparatus. The solution, which is based on a stress wave reverberation model, shows that there is an apparent increase in the strain rate sensitivity of the material which can only be explained in terms of large propagating plastic wave fronts in the specimen. Numerical modelling of the same test geometry for the same input material model is in excellent agreement showing conclusively that stress wave propagation effects are inevitable at high impact velocities. The assumption of uniform stress and strain distribution within a split Hopkinson pressure bar specimen is therefore incorrect at high impact velocities. The formulation of the novel numerical code used in the present work, which is based on the finite volume technique, is also presented.


2014 ◽  
Vol 590 ◽  
pp. 63-68 ◽  
Author(s):  
Zhu Hua Tan ◽  
Bo Zhang ◽  
Peng Cheng Zhai

The effect of stress wave propagation on dynamic response of square tube was investigated by the experimental and numerical simulation methods in the present paper. The square tubes were subjected to the axial impact by split Hopkinson pressure bar. And the deformation process of each square tube was recorded by a high speed camera. Typical dynamic plastic buckling phenomena were observed in the experiments. And the numerical calculation of the experimental load case was conducted to analyze the effect of the stress wave propagation on the initial buckling of the square tube. The results show that there is obvious stress wave propagation in the square tube before the buckling of the square tube. And the initial buckling starts from the rear end of the tube due to the propagation of the stress wave. The relation between the stress wave propagation and initial buckling of the square tube was also discussed.


2016 ◽  
Vol 29 (12) ◽  
pp. 1680-1695 ◽  
Author(s):  
Alper Tasdemirci ◽  
Ali Kara

The effect of perforated interlayers on the stress wave transmission of multilayered materials was investigated both experimentally and numerically using the Split Hopkinson pressure bar (SHPB) testing. The multilayer combinations consisted of a ceramic face plate and a glass/epoxy backing plate with a laterally constrained low modulus solid or perforated rubber and Teflon interlayer. The perforations on rubber interlayer delayed the stress rise time and reduced the magnitude of the transmitted stress wave at low strains, while the perforations allowed the passage of relatively high transmitted stresses at large strains similar to the solid rubber interlayer. It was concluded that the effect of perforations were somewhat less pronounced in Teflon interlayer configuration, arising from its relatively low Poisson’s ratio. It was finally shown that SHPB testing accompanied with the numerical simulations can be used to analyze the effect of compliant interlayer insertion in the multilayered structures.


Proceedings ◽  
2018 ◽  
Vol 2 (8) ◽  
pp. 545
Author(s):  
Xiao Yu ◽  
Li Chen ◽  
Qin fang ◽  
Wuzheng Chen

The stress wave attenuation and energy absorption in the coral sand were respectively investigated. A series of experiments were carried out by using a new methodology with an improved split Hopkinson pressure bar (SHPB). Four types of coral sand, i.e., particle sizes of 1.18–0.60 mm, 0.60–0.30 mm, 0.30–0.15 mm, and 0.15–0.075 mm, were carefully sieved and tested. Significant effects of coral sand on stress wave attenuation and energy absorption were observed. Correlation between stress wave attenuation and energy absorption of coral sand was validated. Conclusions on particle size effect of stress wave attenuation and energy absorption, which support each other, were drawn. There existed a common critical stress zone for coral sand with different particle sizes. When the stress below this zone, sand with small particle sizes attenuates stress wave better and absorb energy more; when the stress beyond this zone, sand with larger particle sizes behave better on stress wave attenuation and energy absorption.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7298
Author(s):  
Shumeng Pang ◽  
Weijun Tao ◽  
Yingjing Liang ◽  
Shi Huan ◽  
Yijie Liu ◽  
...  

Although highly desirable, the experimental technology of the dynamic mechanical properties of materials under multiaxial impact loading is rarely explored. In this study, a true-biaxial split Hopkinson pressure bar device is developed to achieve the biaxial synchronous impact loading of a specimen. A symmetrical wedge-shaped, dual-wave bar is designed to decompose a single stress wave into two independent and symmetric stress waves that eventually form an orthogonal system and load the specimen synchronously. Furthermore, a combination of ground gaskets and lubricant is employed to eliminate the shear stress wave and separate the coupling of the shear and axial stress waves propagating in bars. Some confirmatory and applied tests are carried out, and the results show not only the feasibility of this modified device but also the dynamic mechanical characteristics of specimens under biaxial impact loading. This novel technique is readily implementable and also has good application potential in material mechanics testing.


2014 ◽  
Vol 487 ◽  
pp. 7-14 ◽  
Author(s):  
Xi Guang Deng ◽  
Song Xiao Hui ◽  
Wen Jun Ye ◽  
Xiao Yun Song

This study derived the five parameters in Johnson-Cook equation of CP titanium Gr2. Quasi-static and dynamic compression tests were designed to measure mechanical properties at strain rates of 10-3s-1 and 6000s-1. In order to secure the validity of tested data, a novel fixture was proposed to reduce the displacement measurement error in MTS testing system and the signal processing procedure of compressive split Hopkinson pressure bar for the present study was demonstrated. With the tested data and calculated adiabatic heating temperature rise, parameters A, B, n, m, C have been derived based on mathematical deduction and solve. It was found that the constructed constitutive model fit the tested data well and was able to restore the yield strength value at high strain rate.


Author(s):  
Xia Zhengbing ◽  
Zhang Kefeng ◽  
Deng Yanfeng ◽  
Ge Fuwen

Recently, engineering blasting is widely applied in projects such as rock mineral mining, construction of underground cavities and field-leveling excavation. Dynamic mechanical performance of rocks has been gradually attached importance both in China and abroad. Concrete and rock are two kinds of the most frequently used engineering materials and also frequently used as experimental objects currently. To compare dynamic mechanical performance of these two materials, this study performed dynamic compression test with five different strain rates on concrete and rock using Split Hopkinson Pressure Bar (SHPB) to obtain basic dynamic mechanical parameters of them and then summarized the relationship of dynamic compressive strength, peak strain and strain rate of two materials. Moreover, specific energy absorption is introduced to confirm dynamic damage mechanisms of concrete and rock materials. This work can not only help to improve working efficiency to the largest extent but also ensure the smooth development of engineering, providing rich theoretical guidance for development of related engineering in the future.


2018 ◽  
Vol 38 (2) ◽  
pp. 49-61 ◽  
Author(s):  
M Tarfaoui ◽  
M Nachtane

A series of split Hopkinson pressure bar tests on two-dimensional and three-dimensional woven composites were presented in order to obtain a reliable comparison between the two types of composites and the effect of the z-yarns along the third direction. These tests were done along different configurations: in-plane and out-of-plane compression test. For the three-dimensional woven composite, two different configurations were studied: compression responses along to the stitched direction and orthogonal to the stitched direction. It was found that three-dimensional woven composites exhibit an increase in strength for both: in-plane and out-of-plane tests.


2018 ◽  
Vol 183 ◽  
pp. 02012
Author(s):  
Miloslav Popovič ◽  
Jaroslav Buchar ◽  
Martina Drdlová

The results of dynamic compression and tensile-splitting tests of concrete reinforced by randomly distributed short non – metallic fibres are presented. A Split Hopkinson Pressure Bar combined with a high-speed photographic system, was used to conduct dynamic Brazilian tests. Quasi static test show that the reinforcement of concrete by the non-metallic fibres leads to the improvement of mechanical properties at quasi static loading. This phenomenon was not observed at the high strain rate loading .Some explanation of this result is briefly outlined.


Sign in / Sign up

Export Citation Format

Share Document