scholarly journals Optimal Insurance Indemnity and Reinsurance Strategy for Health Insurance

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yan Zhang ◽  
Yonghong Wu ◽  
Haixiang Yao

“Health insurance + health management” package has recently become one of the most important nonlife insurance products, and its pricing technique has drawn attention from both academia and industry. This paper investigates the optimal indemnity design and per-loss reinsurance strategy for the health insurance package, where the reinsurance contract is assumed to combine the quota-share type and the excess-of-loss type. By applying the Lagrange multiplier method and optimal control technique, we develop the solutions to the corresponding optimization problems and obtain the optimal deductible. Then, we proceed to solve the optimal quota-share proportion and the optimal stop-loss retention based on the optimal insurance indemnity. In addition to theoretical results, numerical examples are also given to illustrate the effects of various key parameters on the optimal indemnity design and combinational reinsurance strategy.

2019 ◽  
Vol 25 (15) ◽  
pp. 2143-2150 ◽  
Author(s):  
M Abdelhakem ◽  
H Moussa ◽  
D Baleanu ◽  
M El-Kady

Two schemes to find approximated solutions of optimal control problems of fractional order (FOCPs) are investigated. Integration and differentiation matrices were used in these schemes. These schemes used Chebyshev polynomials in the shifted case as a functional approximation. The target of the presented schemes is to convert such problems to optimization problems (OPs). Numerical examples are included, showing the strength of the schemes.


2008 ◽  
Vol 38 (2) ◽  
pp. 383-397 ◽  
Author(s):  
A.Y. Golubin

The paper examines a classical risk model where both insurance and reinsurance policies are chosen by the insurer in order to minimize the expected maximal loss. We show that the optimal control problem reduces to a static case. We found that the optimal reinsurance is excess of loss reinsurance and describe the set optimal insurance policies. Such a policy providing the minimal variance of the risk left with insured turns out to be a combination of stop loss and deductible policies. The results are illustrated by two numerical examples.


2008 ◽  
Vol 38 (02) ◽  
pp. 383-397 ◽  
Author(s):  
A.Y. Golubin

The paper examines a classical risk model where both insurance and reinsurance policies are chosen by the insurer in order to minimize the expected maximal loss. We show that the optimal control problem reduces to a static case. We found that the optimal reinsurance is excess of loss reinsurance and describe the set optimal insurance policies. Such a policy providing the minimal variance of the risk left with insured turns out to be a combination of stop loss and deductible policies. The results are illustrated by two numerical examples.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
N. H. Sweilam ◽  
S. M. Al-Mekhlafi ◽  
A. O. Albalawi ◽  
D. Baleanu

Abstract In this paper, a novel coronavirus (2019-nCov) mathematical model with modified parameters is presented. This model consists of six nonlinear fractional order differential equations. Optimal control of the suggested model is the main objective of this work. Two control variables are presented in this model to minimize the population number of infected and asymptotically infected people. Necessary optimality conditions are derived. The Grünwald–Letnikov nonstandard weighted average finite difference method is constructed for simulating the proposed optimal control system. The stability of the proposed method is proved. In order to validate the theoretical results, numerical simulations and comparative studies are given.


2021 ◽  
Vol 11 (5) ◽  
pp. 2312
Author(s):  
Dengguo Xu ◽  
Qinglin Wang ◽  
Yuan Li

In this study, based on the policy iteration (PI) in reinforcement learning (RL), an optimal adaptive control approach is established to solve robust control problems of nonlinear systems with internal and input uncertainties. First, the robust control is converted into solving an optimal control containing a nominal or auxiliary system with a predefined performance index. It is demonstrated that the optimal control law enables the considered system globally asymptotically stable for all admissible uncertainties. Second, based on the Bellman optimality principle, the online PI algorithms are proposed to calculate robust controllers for the matched and the mismatched uncertain systems. The approximate structure of the robust control law is obtained by approximating the optimal cost function with neural network in PI algorithms. Finally, in order to illustrate the availability of the proposed algorithm and theoretical results, some numerical examples are provided.


2021 ◽  
Vol 47 (1) ◽  
Author(s):  
Kevin Schober ◽  
Jürgen Prestin ◽  
Serhii A. Stasyuk

AbstractIn this paper, we show that certain trigonometric polynomial shearlets which are special cases of directional de la Vallée Poussin-type wavelets are able to detect step discontinuities along boundary curves of periodic characteristic functions. Motivated by recent results for discrete shearlets in two dimensions, we provide lower and upper estimates for the magnitude of the corresponding inner products. In the proof, we use localization properties of trigonometric polynomial shearlets in the time and frequency domain and, among other things, bounds for certain Fresnel integrals. Moreover, we give numerical examples which underline the theoretical results.


Author(s):  
B. K. Kannan ◽  
Steven N. Kramer

Abstract An algorithm for solving nonlinear optimization problems involving discrete, integer, zero-one and continuous variables is presented. The augmented Lagrange multiplier method combined with Powell’s method and Fletcher & Reeves Conjugate Gradient method are used to solve the optimization problem where penalties are imposed on the constraints for integer / discrete violations. The use of zero-one variables as a tool for conceptual design optimization is also described with an example. Several case studies have been presented to illustrate the practical use of this algorithm. The results obtained are compared with those obtained by the Branch and Bound algorithm. Also, a comparison is made between the use of Powell’s method (zeroth order) and the Conjugate Gradient method (first order) in the solution of these mixed variable optimization problems.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Xuling Wang ◽  
Xiaodi Li ◽  
Gani Tr. Stamov

This paper studies impulsive control systems with finite and infinite delays. Several stability criteria are established by employing the largest and smallest eigenvalue of matrix. Our sufficient conditions are less restrictive than the ones in the earlier literature. Moreover, it is shown that by using impulsive control, the delay systems can be stabilized even if it contains no stable matrix. Finally, some numerical examples are discussed to illustrate the theoretical results.


2016 ◽  
Vol 26 (3) ◽  
pp. 331-342 ◽  
Author(s):  
Haider Biswas ◽  
Ahad Ali

Optimal control and efficient management of industrial products are the key for sustainable development in industrial and process engineering. It is well-known that proper maintenance of process performance, ensuring the quality products after a long time operation of the system, is desirable in any industry. Nonlinear dynamical systems may play crucial role to appropriately design the model and obtain optimal control strategy in production and process management. This paper deals with a mathematical model in terms of ordinary differential equations (ODEs) that describe control of production and process arising in industrial engineering. The optimal control technique in the form of maximum principle, used to control the quality products in the operation processes, is applied to analyze the model. It is shown that the introduction of state constraint can be advantageous for obtaining good products during the longer operation process. We investigate the model numerically, using some known nonlinear optimal control solvers, and we present the simulation results to illustrate the significance of introducing state constraint onto the dynamics of the model.


Author(s):  
Stefan Banholzer ◽  
Eugen Makarov ◽  
Stefan Volkwein

Many optimization problems in applications can be formulated using several objective functions, which are conflicting with each other. This leads to the notion of multiobjective or multicriterial optimization problems. Here, we investigate the application of the Euclidean reference point method in combination with model-order reduction to multiobjective optimal control problems. Since the reference point method transforms the multiobjective optimal control problem into a series of scalar optimization problems, the method of proper orthogonal decomposition (POD) is introduced as an approach for model-order reduction.


Sign in / Sign up

Export Citation Format

Share Document