scholarly journals Clinical Specimens are the Pool of oprL and toxA Virulence Genes Harboring Multidrug-Resistant Pseudomonas aeruginosa: Findings from a Tertiary Hospital of Nepal

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Yamuna Chand ◽  
Sujan Khadka ◽  
Sanjeep Sapkota ◽  
Suprina Sharma ◽  
Santosh Khanal ◽  
...  

The multidrug- or extensively drug-resistant (MDR/XDR) Pseudomonas aeruginosa carrying some virulence genes has become a global public health threat. However, in Nepal, there is no existing report showing the prevalence of oprL and toxA virulence genes among the clinical isolates of P. aeruginosa. Therefore, this study was conducted for the first time in the country to detect the virulence genes (oprL and toxA) and antibiotic susceptibility pattern of P. aeruginosa. A total of 7,898 clinical specimens were investigated following the standard microbiological procedures. The antibiotic susceptibility testing was examined by the modified disc diffusion method, and virulence genes oprL and toxA of P. aeruginosa were assessed using multiplex PCR. Among the analyzed specimens, 87 isolates were identified to be P. aeruginosa of which 38 (43.68%) isolates were reported as MDR. A higher ratio of P. aeruginosa was detected from urine samples 40 (45.98%), outpatients’ specimens 63 (72.4%), and in patients of the age group of 60–79 years 36 (41.37%). P. aeruginosa was more prevalent in males 56 (64.36%) than in female patients 31 (35.63%). Polymyxin (83.90%) was the most effective antibiotic. P. aeruginosa (100%) isolates harboured the oprL gene, while 95.4% of isolates were positive for the toxA gene. Identification of virulence genes such as oprL and toxA carrying isolates along with the multidrug resistance warrants the need for strategic interventions to prevent the emergence and spread of antimicrobial resistance (AMR). The findings could assist in increasing awareness about antibiotic resistance and suggest the judicious prescription of antibiotics to treat the patients in clinical settings of Nepal.

2020 ◽  
Author(s):  
Yamuna Chand ◽  
Santosh Khanal ◽  
Om Prakash Panta ◽  
Dipendra Shrestha ◽  
Dhruba Kumar Khadka ◽  
...  

Abstract Background: Pseudomonas aeruginosa is an opportunistic human pathogen and are reported to cause acute and chronic infectious diseases. Due to its high ability to acquire resistance to many antibiotics, it has become a global public health threat. It consists of some virulence genes that may lead to its pathogenicity. The main objective of this cross-sectional study was to detect the virulence genes and antibiotic susceptibility pattern of P. aeruginosa isolated from clinical specimens collected from governmental hospital of Nepal.Methods: A total of 7898 clinical specimens were analyzed for the period of six months from November 2018 to April 2019. The specimens were cultured on Nutrient agar, Blood agar, MacConkey agar, Chocolate agar, Cysteine-Lactose, Electrolyte Deficient agar plates and were incubated at 37°C for 24 hours. All the isolates were identified by standard biochemical tests and further confirmed by growth on Cetrimide agar plate. The antibiotic susceptibility testing was performed by modified Kirby-Bauer disc diffusion method following CLSI guideline. Multiplex-PCR was done to detect the virulence genes oprL and toxA. Statistical analysis was carried out using IBM SPSS Statistic ver. 25 and the p-value was calculated at significance level (0.05%) by using Chi square.Results: Out of these specimens investigated, 87 isolates were tentatively identified to be P. aeruginosa in which 20 (22.98 %) were found to be multidrug resistant. Comparatively, most of the P. aeruginosa were isolated from outpatients 63 (72.41 %) than inpatients 24 (27.58 %), from male 56 (64.36 %) than female 31 (35.63 %) and in age group 60-79 years (41.37 %). AST result showed the highest resistance of 100% with cefixime whereas susceptibilities of 83.9% and 81.6% with polymixin B and tobramycin were noticed respectively. The PCR results showed that all P. aeruginosa isolates carried oprL 87 (100%) and 83 (95.4 %) isolates showed toxA genes. Conclusion: The studies revealed that almost all P. aeruginosa harbors both oprL and toxA genes.


2021 ◽  
Vol 14 (8) ◽  
Author(s):  
Seyed Ali Bazghandi ◽  
Mohsen Arzanlou ◽  
Hadi Peeridogaheh ◽  
Hamid Vaez ◽  
Amirhossein Sahebkar ◽  
...  

Background: Drug resistance and virulence genes are two key factors for the colonization of Pseudomonas aeruginosa in settings with high antibiotic pressure, such as hospitals, and the development of hospital-acquired infections. Objectives: The objective of this study was to investigate the prevalence of drug resistance and virulence gene profiles in clinical isolates of P. aeruginosa in Ardabil, Iran. Methods: A total of 84 P. aeruginosa isolates were collected from clinical specimens of Ardabil hospitals and confirmed using laboratory standard tests. The disk diffusion method was used for antibiotic susceptibility testing and polymerase chain reaction (PCR) for the identification of P. aeruginosa virulence genes. Results: The highest and the lowest antibiotic resistance rates of P. aeruginosa strains were against ticarcillin-clavulanate (94%) and doripenem (33.3%), respectively. In addition, the frequency of multidrug-resistant (MDR) P. aeruginosa was 55.9%. The prevalence of virulence factor genes was as follows: algD 84.5%, lasB 86.9%, plcH 86.9%, plcN 86.9%, exoU 56%, exoS 51.2%, toxA 81%, nan1 13.1%, and pilB 33.3%. A significant association was observed between resistance to some antibiotics and the prevalence of virulence genes in P. aeruginosa. Conclusions: Our results revealed a high prevalence of antibiotic resistance, especially MDR, and virulence-associated genes in clinical isolates of P. aeruginosa in Ardabil hospitals. Owing to the low resistance rates against doripenem, gentamicin, and tobramycin, these antibiotics are recommended for the treatment of infections caused by highly resistant and virulent P. aeruginosa strains.


2021 ◽  
Author(s):  
Rafael Nakamura-Silva ◽  
Mariana Oliveira-Silva ◽  
João Pedro Rueda Furlan ◽  
Eliana Guedes Stehling ◽  
Carlos Eduardo Saraiva Miranda ◽  
...  

Abstract Multidrug-resistant (MDR) and hypervirulent Klebsiella pneumoniae (hvKp) clones have become a major threat to global public health. The CG258 is considered a high-risk CG and the K. pneumoniae strains belonging to it are known to be often multi-resistant and to spread mainly in the hospital environment. This study aimed to characterize the antimicrobial resistance profile, virulence factors, and the clonal relationships among 13 K. pneumoniae strains belonging to CG258 from patients admitted to a tertiary hospital in Teresina, in the state of Piauí, northeastern Brazil. Ten strains were classified as MDR and three as extensively drug-resistant (XDR). Three different β-lactamase-encoding genes ( bla KPC , bla OXA-1- like , and bla CTX-M-Gp1) and six virulence genes ( fimH , ycfM , mrkD , entB , ybtS , and kfu ) were detected. Moreover, two hypermucoviscous K. pneumoniae strains and one capsular K-type 2 were found. Multilocus sequence typing analysis revealed 10 different sequence types (STs) (ST14, ST17, ST20, ST29, ST45, ST101, ST268, ST1800, ST3995, and ST3996) belonging to CG258, being two (ST3995 and ST3996) described for the first time in this study.


2015 ◽  
pp. 4937-4946 ◽  
Author(s):  
Yuly Bernal-Rosas ◽  
Karen Osorio-Muñoz ◽  
Orlando Torres-García

ABSTRACT Objective. The goal of this study was to evaluate the susceptibility pattern of isolates P. aeruginosa from veterinary clinical centers in Bogotá, D.C., to some commonly used antibiotics in clinical. Materials and methods. Bacteriological standard protocols were used for the isolation and identification of bacterial strains. To evaluate the antimicrobial susceptibility of the isolates, to commonly used antibiotics, was performed the Kirby-Bauer agar-disk diffusion method on Mueller-Hinton agar. Results. A total of 160 samples was taken from clinical specimens and the environment in different veterinary clinics. Out of these samples, 89 (55.6%) were gram-negative strains, of which ten strains of P. aeruginosa were isolated (11.2%). All strains were resistant to Cefazolin, Lincomycin, Cephalothin, Ampicillin, Clindamycin, Sulfamethoxazole-Trimethoprim and Chloramphenicol while some isolates exhibited either resistance or an intermediate response to Amikacin (30%), Gentamicin (30%), Tobramycin (10%), Ciprofloxacin (20%), Ceftazidime (30%), Erythromycin (100%), Tetracycline (100%), Imipenem (10%), Meropenem (90%) and Bacitracin (90%). Conclusions. The results demonstrate that the acquired antimicrobial resistances of P. aeruginosa strains depend on antibiotic protocols applied. As observed in human hospitals, Pseudomonas aeruginosa is acting as one of the multidrug-resistant microorganisms of veterinary clinical relevance.


2020 ◽  
pp. 59-67
Author(s):  
Sulaiman D. Sulaiman ◽  
Ghusoon A. Abdulhasan

  Pseudomonas aeruginosa is considered as a developing opportunistic nosocomial pathogen and is well-known for its multidrug resistance that can be efficiently treated by a combination of antibiotics andefflux pump inhibitors (EPI). Therefore, the purpose of this study was to investigate the effect of curcumin as an EPI for the enhancement of the effectiveness of antibiotics against multidrug resistant (MDR) isolates ofP. aeruginosa. Susceptibility patterns of suspected bacteria was determined using the disc diffusion method andresistant bacteria were identified using chromogenic agar and 16S rDNA. The effectsof curcuminon the enhancement of antibiotics’s activity was evaluated usingthe broth microdilution method.The susceptibility patterns for 50 (67.6%) suspectedP. aeruginosaisolates showed that 36 (72%) of these isolateswere resistant to one of the used antibiotics,whereasonly 21 (42%) were MDR. The highest percentage of resistance was observedtoceftazidime (66%) followed by ciprofloxacin and levofloxacin (40%). Only 35 isolates were specified by chromogenic agar and 16S rDNAas P. aeruginosa.The minimal inhibitory concentration (MIC) of 35 isolates for ciprofloxacin resistant was between 4 and128 µg/ml while for ceftazidime was between 64and 512 µg/ml. After the addition of 50 μg/ml curcumin with ciprofloxacin, there wasa significant increase in the sensitivity (p≤ 0.01) of 13 MDR P.aeroginosa isolates whereas no differences in the sensitivity to ceftazidime were recorded before and after addition ofcurcumin. In conclusion, the results of this study show that curcumin can decrease the MIC value of ciprofloxacin in MDR isolates of P. aeruginosaand can be used as a native compound to enhance the treatment of resistant isolates with ciprofloxacin.


1982 ◽  
Vol 16 (3) ◽  
pp. 458-463 ◽  
Author(s):  
N J Legakis ◽  
M Aliferopoulou ◽  
J Papavassiliou ◽  
M Papapetropoulou

2019 ◽  
Vol 21 (2) ◽  
pp. 110-116
Author(s):  
Rajani Shrestha ◽  
N. Nayak ◽  
D.R. Bhatta ◽  
D. Hamal ◽  
S.H. Subramanya ◽  
...  

Clinical isolates of Pseudomonas aeruginosa often exhibit multidrug resistance due to their inherent ability to form biofilms. Drug resistance in Ps. aeruginosa is a major clinical problem, especially in the management of patients with nosocomial infections and those admitted to ICUs with indwelling medical devices. To evaluate the biofilm forming abilities of the clinical isolates of Ps. aeruginosa and to correlate biofilm formation with antibiotic resistance. A total of 90 consecutive isolates of Ps. aeruginosa obtained from various specimens collected from patients visiting the Manipal Teaching Hospital, Pokhara, Nepal between January 2018 - October 2018 were studied. Isolates were identified by standard microbiological methods. Antibiotic susceptibility testing was performed by Kirby-Bauer disc diffusion method. All the isolates were tested for their biofilm forming abilities by employing the tissue culture plate assay. Of the 90 Ps. aeruginosa isolates, maximum i.e 42 (46.6%) were from patients in the age group of > 50 years. Majority (30; 33.3%) of the isolates were obtained from sputum samples. However, percentage isolation from other specimens like urine, endotracheal tube (ETT), pus, eye specimens and blood were 18.9%, 16.7%, 16.7%, 7.8% and 6.7% respectively. All the isolates were sensitive to polymixin B and colistin, 91.1% of the organisms were sensitive to imipenem, and more than 80% to aminoglycosides (80% to gentamicin, 83.3% to amikacin). A total of 29 (32.2%) organisms were biofilm producers. Maximum numbers of biofilm producing strains were obtained from ETT (8 of 15; 53.3%), pus (8 of 15; 53.3%) and blood (2 of 6; 33.3%) i.e from all invasive sites. None of the isolates from noninvasive specimens such as conjunctival swabs were biofilm positive. Significantly higher numbers of biofilm producers (23 of 29; 79.3%) were found to be multidrug resistant as compared to non-biofilm (6 of 61; 9.8%) producers (p=0.000). Ps. aeruginosa colonization leading to biofilm formation in deep seated tissues and on indwelling devices is a therapeutic challenge as majority of the isolates would be recalcitrant to commonly used antipseudomonal drugs. Effective monitoring of drug resistance patterns in all Pseudomonas clinical isolates should be a prerequisite for successful patient management.


Sign in / Sign up

Export Citation Format

Share Document