scholarly journals Drug Resistance and Biofilm Production among Pseudomonas aeruginosa Clinical Isolates in a Tertiary Care Hospital of Nepal

2019 ◽  
Vol 21 (2) ◽  
pp. 110-116
Author(s):  
Rajani Shrestha ◽  
N. Nayak ◽  
D.R. Bhatta ◽  
D. Hamal ◽  
S.H. Subramanya ◽  
...  

Clinical isolates of Pseudomonas aeruginosa often exhibit multidrug resistance due to their inherent ability to form biofilms. Drug resistance in Ps. aeruginosa is a major clinical problem, especially in the management of patients with nosocomial infections and those admitted to ICUs with indwelling medical devices. To evaluate the biofilm forming abilities of the clinical isolates of Ps. aeruginosa and to correlate biofilm formation with antibiotic resistance. A total of 90 consecutive isolates of Ps. aeruginosa obtained from various specimens collected from patients visiting the Manipal Teaching Hospital, Pokhara, Nepal between January 2018 - October 2018 were studied. Isolates were identified by standard microbiological methods. Antibiotic susceptibility testing was performed by Kirby-Bauer disc diffusion method. All the isolates were tested for their biofilm forming abilities by employing the tissue culture plate assay. Of the 90 Ps. aeruginosa isolates, maximum i.e 42 (46.6%) were from patients in the age group of > 50 years. Majority (30; 33.3%) of the isolates were obtained from sputum samples. However, percentage isolation from other specimens like urine, endotracheal tube (ETT), pus, eye specimens and blood were 18.9%, 16.7%, 16.7%, 7.8% and 6.7% respectively. All the isolates were sensitive to polymixin B and colistin, 91.1% of the organisms were sensitive to imipenem, and more than 80% to aminoglycosides (80% to gentamicin, 83.3% to amikacin). A total of 29 (32.2%) organisms were biofilm producers. Maximum numbers of biofilm producing strains were obtained from ETT (8 of 15; 53.3%), pus (8 of 15; 53.3%) and blood (2 of 6; 33.3%) i.e from all invasive sites. None of the isolates from noninvasive specimens such as conjunctival swabs were biofilm positive. Significantly higher numbers of biofilm producers (23 of 29; 79.3%) were found to be multidrug resistant as compared to non-biofilm (6 of 61; 9.8%) producers (p=0.000). Ps. aeruginosa colonization leading to biofilm formation in deep seated tissues and on indwelling devices is a therapeutic challenge as majority of the isolates would be recalcitrant to commonly used antipseudomonal drugs. Effective monitoring of drug resistance patterns in all Pseudomonas clinical isolates should be a prerequisite for successful patient management.

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Michael A. Olu-Taiwo ◽  
Japheth A. Opintan ◽  
Francis Samuel Codjoe ◽  
Akua Obeng Forson

Metallo-beta-lactamase-producing Acinetobacter spp. is a major challenge for therapeutic treatment of nosocomial infections. This study is aimed at determining the prevalence of MBL-producing Acinetobacter spp. among 87 clinical isolates of Acinetobacter spp. from the Korle-Bu Teaching Hospital, Accra, between August 2014 and July 2015. Acinetobacter spp. was identified by standard bacteriological method, and resistance to different antibiotics was assessed with the Kirby–Bauer disc diffusion method. Meropenem-resistant Acinetobacter isolates were screened for enzyme activity using the modified Hodge test (MHT) and combined disc test (CDT). Additionally, multiplex PCR was used to determine MBL genes presence (blaVIM,blaIMP, and blaNDM). All Acinetobacter isolates showed high resistance to cefotaxime (90.8%), ceftazidime (75.9%), cotrimoxazole (70.1%), ciprofloxacin (64.4%), gentamicin (72.4%), levofloxacin (67.8%), and meropenem (59.8%). A total of 54 (62.1%) of Acinetobacter isolates were multidrug-resistant. Out of 52 (59.8%) meropenem-resistant Acinetobacter, 3 (5.8%) were carbapenemase producers by MHT, whilst, 23 (44.2%) were CDT positive. There was no significant difference between the resistance pattern of amikacin, ceftazidime, cotrimoxazole, ciprofloxacin, and meropenem amongst CDT-positive and CDT-negative isolates (p>0.05). A total of 7/87 (8.1%) CDT-positive Acinetobacter isolates harboured blaNDM; of these, 4 (57.1%) were from wound swabs, urine (n=2) (28.6%), and ear swab (n=1) (14.3%). The study revealed that less than 9% of Acinetobacter spp. contained blaNDM encoding genes. Strict antibiotics usage plan and infection control measures are required to prevent the spread of these resistance genes.


2013 ◽  
Vol 14 (1) ◽  
pp. 28-32 ◽  
Author(s):  
Azizun Nahar ◽  
Shaheda Anwar ◽  
Md. Ruhul Amin Miah

Purpose: The purpose of this study was to detect biofilm formation in clinical isolates of Acinetobacter species and to observe correlation between biofilm formation and antimicrobial resistance among Acinetobacter isolates. Methods: Two hundred fifty six clinical samples collected from patients who were admitted in Intensive Care Unit (ICU) and on device, patients from Surgery, Medicine, Gynae & Obs and Urology department of Bangabandhu Sheikh Mujib Medical University (BSMMU) and from Burn unit of Dhaka Medical College Hospital were included in this study. Biofilm formation and antibiotyping were performed for the isolates of Acinetobacter species recovered from clinical samples including tracheal aspirates, blood, urine, wound swab, pus, throat swab, endotracheal tubes, burn samples, ascitic fluid, sputum, aural swab, oral swab, cerebrospinal fluid, and catheter tip. Correlation of biofilm formation with antimicrobial resistance pattern among Acinetobacter isolates were also observed in this study. Result: A total of 256 various specimens were studied of which 95 Intensive Care Unit (ICU) and 161 Non ICU samples. Out of 95 ICU and 161 Non ICU samples, Acinetobacter species were isolated from 32 (33.7%) and 20(12.4%) respectively. From 32 ICU and 20 Non ICU Acinetobacter isolates, 28 (87.5%) and 11 (55%) were biofilm producers. Biofilm forming capacity of Acinetobacter species was significantly (p<0.008) greater in ICU than in Non ICU isolates. In both ICU and Non ICU isolates, biofilm forming Acinetobacter species were 100% resistant to amoxicillin, ceftriaxone, ceftazidime, cefotaxime, cefuroxime, and aztreonam. Resistance to antibiotics such as gentamicin, amikacin, netilmicin, ciprofloxacin and imipenem was higher among biofilm forming Acinetobacter isolates in ICU than Non ICU isolates. Susceptibility to colistin was 100% in Non ICU isolates but in ICU it showed 7.1% resistance. Conclusions: This investigation showed that most of the clinical isolates of Acinetobacter species were biofilm producers especially from ICU samples and they were multidrug resistant. Even polymixin resistant Acinetobacter isolates are slowly emerging. This is very alerming for us that biofilm forming multidrug resistant Acinetobacter species represents a severe threat in the treatment of hospitalized patients. So, antibiotic policy and guidelines are essential to eliminate major outbreak in future.DOI: http://dx.doi.org/10.3329/jom.v14i1.14533 J MEDICINE 2013; 14 : 28-32


2020 ◽  
Vol 19 (1) ◽  
pp. 77-82
Author(s):  
Shamweel Ahmad ◽  
Muslih A Alotaibi ◽  
Mohmmed S Alamri

Among gram-negative microorganisms Pseudomonas aeruginosa is the most common bacteria identified in different clinical specimens of hospitalized patients. A few studies have been conducted in Saudi Arabia regarding antibiotic susceptibility pattern. The purpose of this study was to evaluate the current levels of antibiotic susceptibility and to assess the resistance pattern of antibiotics among the clinical isolates of P. aeruginosa in the King Khalid Hospital, Alkharj, Kingdom of Saudi Arabia. This study was carried out during January, 2015 to May, 2015. A total of 180 different specimens such as sputum, urine, pus swabs, wound swabs etc. were collected from different patients admitted to the hospital. Thirty (30) clinical isolates of P. aeruginosa were isolated from different specimens of the patients suspected of having respiratory tract infection, urinary tract infection, wound infections, etc. The antibiotic susceptibility profiles of all the isolates were determined using Kirby-Bauer disk diffusion method. Piperacillin-tazobactam was found to be the most active antimicrobial agent with 96.7% susceptibility followed by cefepime (83.3%), ceftazidime (83.3%), and ciprofloxacin (76.7%). All isolates were resistant to ertapenem, cefuroxime, cefoxitin and nitrofurantoin. Anti-bacterial treatment strategies should focus on P. aeruginosa, for which the prevalence rates are increasing every year. The usage of piperacillin-tazobactam, cefepime, ceftazidime and ciprofloxacin must be reserved and only be given to the patients after susceptibility test to reduce the resistance of P. aeruginosa against these agents. Dhaka Univ. J. Pharm. Sci. 19(1): 77-82, 2020 (June


Chemotherapy ◽  
2015 ◽  
Vol 61 (1) ◽  
pp. 8-14 ◽  
Author(s):  
Roberto Rosales-Reyes ◽  
María Dolores Alcántar-Curiel ◽  
Ma. Dolores Jarillo-Quijada ◽  
Catalina Gayosso-Vázquez ◽  
María del Rayo Morfin-Otero ◽  
...  

Background:Acinetobacter baumannii has emerged as a major cause of hospital-associated infections with increased morbidity and mortality among those affected. Methods: A total of 85 isolates of a highly prevalent multidrug-resistant clone, identified during the period 2007-2011, were analyzed for biofilm formation on a polystyrene surface. The minimal inhibitory concentration was determined by the Sensititre System, the agar disk diffusion method and then read by means of the BIOMIC system and serial dilutions on Müller-Hinton agar. Results: In this study, covering a period of 5 years (2007-2011), we demonstrate that a particular clone emerged as the most prevalent, with an associated lethality of 28.2%. We demonstrate that 92.9% of strains corresponding to this clone are biofilm producers. Our results also demonstrate that all isolates were 100% susceptible to polymyxin B. Conclusion: Our study suggests that the high prevalence and lethality of this multidrug-resistant clone of A. baumannii and its persistence over close to 5 years in a Mexican tertiary hospital environment can be explained in part by the ability of these clinical isolates of A. baumannii to form biofilms.


2021 ◽  
Vol 23 (4) ◽  
pp. 290-296
Author(s):  
Rojina Darnal ◽  
Mehraj Ansari ◽  
Ganesh Rai ◽  
Kul Raj Rai ◽  
Shiba Kumar Rai

Carbapenemases are the enzymes that catalyze β–lactam groups of antibiotics. The carbapenemase producers are resistant to β–lactam antibiotics and are usually multidrug-resistant bacteria challenging widely used therapeutics and treatment options. Therefore, the detection of carbapenemase activity among clinical isolates is of great therapeutic importance. We aimed to study the MDR and carbapenemase-producing Klebsiella pneumoniae and Pseudomonas aeruginosa isolated from various clinical samples at a tertiary care hospital in Nepal. A total of 3,579 clinical samples were collected from the patients visiting the Department of Microbiology, B&B Hospital, Gwarko, Lalitpur. The samples were processed to isolate K. pneumoniae and P. aeruginosa and then subjected to antibiotic susceptibility testing (AST) by the Kirby-Bauer disk diffusion method. Phenotypic detection of carbapenemase activity was performed in the imipenem-resistant isolates by the modified Hodge test (MHT). Of the total samples, 1,067 (29.8%) samples showed significant growth positivity, out of which 190 (17.3%) isolates were K. pneumoniae and 121 (11.3%) were P. aeruginosa. Multidrug resistance was seen in 70.5% of the K. pneumoniae isolates and 65.3% of the P. aeruginosa isolates. Carbapenemase production was confirmed in 11.9%, and 12.2% of the imipenem-resistant K. pneumoniae and P. aeruginosa isolates, respectively, by the MHT. This study determined the higher prevalence of MDR among K. pneumoniae and P. aeruginosa; however, carbapenemase production was relatively low.


Author(s):  
Bhuvaneshwari Gunasekar

Objective: The multiple antibiotic resistance (MAR) indexing and finding Multidrug resistant (MDR) bacteria will help to indicate the origin from high risk of contamination where the antibiotics are often used. Hence this study was carried out to give the MAR index of non-fermenting Gram negative bacilli in a tertiary care hospital which would help our infection control team also.Methods: Drug resistance was tested by Kirby bauer’s disc diffusion method. MAR index was calculated using the formula, a/b (were a= number of antibiotics to which the organism was resistant and b= total number of antibiotics to which the organism was tested).Results: Out of 240 Gram negative non-fermenters isolated, 117 (49%) strains were greater than 0.2 of MAR index, 95(81%) was from in-patient department. 73(62%) were hospitalized for more than 3 days, 44 (38%) was from surgery department. 49(42%) was wound specimen. Out of 117 multiple antibiotic resistant isolates 99 (85%) were MDR isolates.Conclusion: 51% prevalence of isolates >0.2 MAR index shows that the source of contamination can still be brought up down by proper surveillance and management with proper usage of  surface and skin disinfectants especially in surgery ward where the MAR index has indicated more usage of antibiotics


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 14
Author(s):  
Dina Auliya Amly ◽  
Puspita Hajardhini ◽  
Alma Linggar Jonarta ◽  
Heribertus Dedy Kusuma Yulianto ◽  
Heni Susilowati

Background: Pseudomonas aeruginosa, a multidrug-resistant Gram-negative bacterium, produces pyocyanin, a virulence factor associated with antibiotic tolerance. High concentrations of royal jelly have an antibacterial effect, which may potentially overcome antibacterial resistance. However, in some cases, antibiotic tolerance can occur due to prolonged stress of low-dose antibacterial agents. This study aimed to investigate the effect of subinhibitory concentrations of royal jelly on bacterial growth, pyocyanin production, and biofilm formation of P. aeruginosa. Methods: Pseudomonas aeruginosa ATCC 10145 and clinical isolates were cultured in a royal jelly-containing medium to test the antibacterial activity. Pyocyanin production was observed by measuring the absorbance at 690 nm after 36 h culture and determined using extinction coefficient 4310 M-1 cm-1. Static microtiter plate biofilm assay performed to detect the biofilm formation, followed by scanning electron microscopy. Results: Royal jelly effectively inhibited the viability of both strains from a concentration of 25%. The highest production of pyocyanin was observed in the subinhibitory concentration group 6.25%, which gradually decreased along with the decrease of royal jelly concentration. Results of one-way ANOVA tests differed significantly in pyocyanin production of the two strains between the royal jelly groups. Tukey HSD test showed concentrations of 12.5%, 6.25%, and 3.125% significantly increased pyocyanin production of ATCC 10145, and the concentrations of 12.5% and 6.25% significantly increased production of the clinical isolates. Concentrations of 12.5% and 6.125% significantly induced biofilm formation of P. aeruginosa ATCC 10145, in line with the results of the SEM analysis. Conclusions: The royal jelly concentration of 25% or higher inhibits bacterial growth; however, the subinhibitory concentration increases pyocyanin production and biofilm formation in P. aeruginosa. It is advisable to determine the appropriate concentration of royal jelly to obtain beneficial virulence inhibiting activity.


Author(s):  
Harsha Sreedharan ◽  
KB Asha Pai

Introduction: Methicillin-Resistant Staphylococcus aureus(MRSA) infection is a major global healthcare problem, the prevalence of which varies from 25-50% in India. It is known to cause Skin and Soft tissue Infections (SSI), endovascular infections, endocarditis, pneumonia, septic arthritis, osteomyelitis, and sepsis. Vancomycin is the drug of choice for treating severe MRSA infections. Ceftaroline, a fifth-generation cephalosporin has been approved by the United States Food and Drug Administration (US FDA) for treating acute bacterial SSI caused by susceptible micro-organisms including MRSA, Community acquired respiratory tract infection, MRSA bacteremia and endocarditis. Aim: To assess the susceptibility of clinical isolates of S. aureusto ceftaroline, in a Tertiary Care Hospital. Materials and Methods: This prospective study was conducted in the Department of Microbiology of a Tertiary Care Hospital over a period of two months from June 2019 to July 2019. S.aureus isolates from various clinical samples were screened for methicillin resistance by disc diffusion method using cefoxitin disc and ceftaroline susceptibility of these isolates was assessed by E-strip method. The isolates were classified as ceftaroline susceptible, Susceptibility Dose Dependent (SDD) and ceftaroline resistant respectively as per CLSI guidelines. A descriptive analysis of the data was done and the results were presented as frequencies and percentages. Results: All the S.aureus isolates were found to be susceptible to ceftaroline. Methicillin Sensitive Staphylococcus aureus(MSSA) isolates had lower Minimum Inhibitory Concentration (MIC) when compared to MRSA. The highest MIC among MRSA was 0.5 μg/mL. Conclusion: Ceftaroline can be considered as an effective alternative for treatment of infections caused by MRSA.


2021 ◽  
Vol 14 (8) ◽  
Author(s):  
Seyed Ali Bazghandi ◽  
Mohsen Arzanlou ◽  
Hadi Peeridogaheh ◽  
Hamid Vaez ◽  
Amirhossein Sahebkar ◽  
...  

Background: Drug resistance and virulence genes are two key factors for the colonization of Pseudomonas aeruginosa in settings with high antibiotic pressure, such as hospitals, and the development of hospital-acquired infections. Objectives: The objective of this study was to investigate the prevalence of drug resistance and virulence gene profiles in clinical isolates of P. aeruginosa in Ardabil, Iran. Methods: A total of 84 P. aeruginosa isolates were collected from clinical specimens of Ardabil hospitals and confirmed using laboratory standard tests. The disk diffusion method was used for antibiotic susceptibility testing and polymerase chain reaction (PCR) for the identification of P. aeruginosa virulence genes. Results: The highest and the lowest antibiotic resistance rates of P. aeruginosa strains were against ticarcillin-clavulanate (94%) and doripenem (33.3%), respectively. In addition, the frequency of multidrug-resistant (MDR) P. aeruginosa was 55.9%. The prevalence of virulence factor genes was as follows: algD 84.5%, lasB 86.9%, plcH 86.9%, plcN 86.9%, exoU 56%, exoS 51.2%, toxA 81%, nan1 13.1%, and pilB 33.3%. A significant association was observed between resistance to some antibiotics and the prevalence of virulence genes in P. aeruginosa. Conclusions: Our results revealed a high prevalence of antibiotic resistance, especially MDR, and virulence-associated genes in clinical isolates of P. aeruginosa in Ardabil hospitals. Owing to the low resistance rates against doripenem, gentamicin, and tobramycin, these antibiotics are recommended for the treatment of infections caused by highly resistant and virulent P. aeruginosa strains.


Sign in / Sign up

Export Citation Format

Share Document