scholarly journals Development of Wind Power Prediction Models for Pawan Danavi Wind Farm in Sri Lanka

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Piyal Ekanayake ◽  
Amila T. Peiris ◽  
J. M. Jeevani W. Jayasinghe ◽  
Upaka Rathnayake

This paper presents the development of wind power prediction models for a wind farm in Sri Lanka using an artificial neural network (ANN), multiple linear regression (MLR), and power regression (PR) techniques. Power generation data over five years since 2015 were used as the dependent variable in modeling, while the corresponding wind speed and ambient temperature values were used as independent variables. Variation of these three variables over time was analyzed to identify monthly, seasonal, and annual patterns. The monthly patterns are coherent with the seasonal monsoon winds exhibiting little annual variation, in the absence of extreme meteorological changes during the period of 2015–2020. The correlation within each pair of variables was also examined by applying statistical techniques, which are presented in terms of Pearson’s and Spearman’s correlation coefficients. The impact of unit increase (or decrease) in the wind speed and ambient temperature around their mean values on the output power was also quantified. Finally, the accuracy of each model was evaluated by means of the correlation coefficient, root mean squared error (RMSE), bias, and the Nash number. All the models demonstrated acceptable accuracy with correlation coefficient and Nash number closer to 1, very low RMSE, and bias closer to 0. Although the ANN-based model is the most accurate due to advanced features in machine learning, it does not express the generated power output in terms of the independent variables. In contrast, the regression-based statistical models of MLR and PR are advantageous, providing an insight into modeling the power generated by the other wind farms in the same region, which are influenced by similar climate conditions.

2019 ◽  
Vol 11 (3) ◽  
pp. 650 ◽  
Author(s):  
Jianguo Zhou ◽  
Xiaolei Xu ◽  
Xuejing Huo ◽  
Yushuo Li

The randomness and volatility of wind power poses a serious threat to the stability, continuity, and adjustability of the power system when it is connected to the grid. Accurate short-term wind power prediction methods have important practical value for achieving high-precision prediction of wind farm power generation and safety and economic dispatch. Therefore, this paper proposes a novel combined model to improve the accuracy of short-term wind power prediction, which involves grey correlation degree analysis, ESMD (extreme-point symmetric mode decomposition), sample entropy (SampEn) theory, and a hybrid prediction model based on three prediction algorithms. The meteorological data at different times and altitudes is firstly selected as the influencing factors of wind power. Then, the wind power sub-series obtained by the ESMD method is reconstructed into three wind power characteristic components, namely PHC (high frequency component of wind power), PMC (medium frequency component of wind power), and PLC (low frequency component of wind power). Similarly, the wind speed sub-series obtained by the ESMD method is reconstructed into three wind speed characteristic components, called SHC (high frequency component of wind speed), SMC (medium frequency component of wind speed), and SLC (low frequency component of wind speed). Subsequently, the Bat-BP model, Adaboost-ENN model, and ENN (Elman neural network), which have high forecasting accuracy, are selected to predict PHC, PMC, and PLC, respectively. Finally, the prediction results of three characteristic components are aggregated into the final prediction values of the original wind power series. To evaluate the prediction performance of the proposed combined model, 15-min wind power and meteorological data from the wind farm in China are adopted as case studies. The prediction results show that the combined model shows better performance in short-term wind power prediction compared with other models.


2012 ◽  
Vol 224 ◽  
pp. 401-405
Author(s):  
Xi Yun Yang ◽  
Peng Wei ◽  
Huan Liu ◽  
Bao Jun Sun

Accurate wind farm power prediction can relieve the disadvantageous impact of wind power plants on power systems and reduce the difficulty of the scheduling of power dispatching department. Improving accuracy of short-term wind speed prediction is the key of wind power prediction. The authors have studied the short-term wind power forecasting of power plants and proposed a model prediction method based on SVM with backstepping wind speed of power curve. In this method, the sequence of wind speed that is calculated according to the average power of the wind farm operating units and the scene of the power curve is the input of the SVM model. The results show that this method can meet the real-time needs of the prediction system, but also has better prediction accuracy, is a very valuable short-term wind power prediction method.


2012 ◽  
Vol 512-515 ◽  
pp. 771-777
Author(s):  
Feng Ming Yu ◽  
Xi Cang Li ◽  
Jin Hua Song ◽  
Chun Xiang Gao ◽  
Chun Long Jiang

Effective wind power prediction on wind farm can not only guarantee safe operation of wind farm, but also increase wind power storage and utilization efficiency. This research combines mesoscale numerical weather prediction model with BP neural network model for the use of wind power prediction. WRF model is used to recalculate the meteorological elements of trial wind farm from Jun. 2008 to Jun. 2009, and the accuracy check result shows that the correlation coefficient between predicted value and corresponding measured value of wind speed reaches 0.72. Predictions accuracy of wind direction, air temperature, humidity and air pressure are also precise, which meets the requirement of building BP neural network prediction model. The BP neural network prediction models of output power of 40 wind turbines are established on trial wind farm one by one, to analyze the influence of data normalization method and neuron number at the hidden layer on prediction accuracy. The prediction test every 10 minutes, with the actual effect of 24 hours, is done for 26 days, and prediction accuracy test is conducted by using independent samples. The result shows that relative root mean square error of the output power of the single wind turbine from 24.8% to 32.6%, and the correlation coefficient between predicted value and measured value is from 0.45 to 0.68; relative root mean square error of the whole wind farm is 21.5%, and the correlation coefficient between predicted value and measured value is 0.74.


2013 ◽  
Vol 329 ◽  
pp. 411-415 ◽  
Author(s):  
Shuang Gao ◽  
Lei Dong ◽  
Xiao Zhong Liao ◽  
Yang Gao

In long-term wind power prediction, dealing with the relevant factors correctly is the key point to improve the prediction accuracy. This paper presents a prediction method with rough set analysis. The key factors that affect the wind power prediction are identified by rough set theory. The chaotic characteristics of wind speed time series are analyzed. The rough set neural network prediction model is built by adding the key factors as the additional inputs to the chaotic neural network model. Data of Fujin wind farm are used for this paper to verify the new method of long-term wind power prediction. The results show that rough set method is a useful tool in long-term prediction of wind power.


2014 ◽  
Vol 536-537 ◽  
pp. 470-475
Author(s):  
Ye Chen

Due to the features of being fluctuant, intermittent, and stochastic of wind power, interconnection of large capacity wind farms with the power grid will bring about impact on the safety and stability of power systems. Based on the real-time wind power data, wind power prediction model using Elman neural network is proposed. At the same time in order to overcome the disadvantages of the Elman neural network for easily fall into local minimum and slow convergence speed, this paper put forward using the GA algorithm to optimize the weight and threshold of Elman neural network. Through the analysis of the measured data of one wind farm, shows that the forecasting method can improve the accuracy of the wind power prediction, so it has great practical value.


2013 ◽  
Vol 27 ◽  
pp. 20-29 ◽  
Author(s):  
Nooshin Bigdeli ◽  
Karim Afshar ◽  
Amin Shokri Gazafroudi ◽  
Mostafa Yousefi Ramandi

2013 ◽  
Vol 448-453 ◽  
pp. 1835-1839
Author(s):  
Zhong Hua Cai ◽  
Ting Ting An ◽  
Hong Tu Zhang

Due to the significant instability, anti-peak-regulation and intermittency of wind power, wind power integration needs an accurate prediction technique to be a basis. At present, the difficulty of wind power integration has resulted in a large number of wind curtailment phenomena and wasted a lot of renewable energy. Grey prediction model has many advantages such as requiring little historical data and the simple model, with high prediction accuracy and convenient calculation, and without regard to regularities of distribution, etc. This paper puts forward the method for short-term wind power prediction using gray model GM (1, 1) and carries out simulation study and empirical analysis using the data from a wind farm of Jilin province, which shows the science and operability of the proposed model. It provides a new research method for the wind power prediction.


2020 ◽  
Vol 10 (21) ◽  
pp. 7915
Author(s):  
Hang Fan ◽  
Xuemin Zhang ◽  
Shengwei Mei ◽  
Kunjin Chen ◽  
Xinyang Chen

Ultra-short-term wind power prediction is of great importance for the integration of renewable energy. It is the foundation of probabilistic prediction and even a slight increase in the prediction accuracy can exert significant improvement for the safe and economic operation of power systems. However, due to the complex spatiotemporal relationship and the intrinsic characteristic of nonlinear, randomness and intermittence, the prediction of regional wind farm clusters and each wind farm’s power is still a challenge. In this paper, a framework based on graph neural network and numerical weather prediction (NWP) is proposed for the ultra-short-term wind power prediction. First, the adjacent matrix of wind farms, which are regarded as the vertexes of a graph, is defined based on geographical distance. Second, two graph neural networks are designed to extract the spatiotemporal feature of historical wind power and NWP information separately. Then, these features are fused based on multi-modal learning. Third, to enhance the efficiency of prediction method, a multi-task learning method is adopted to extract the common feature of the regional wind farm cluster and it can output the prediction of each wind farm at the same time. The cases of a wind farm cluster located in Northeast China verified that the accuracy of a regional wind farm cluster power prediction is improved, and the time consumption increases slowly when the number of wind farms grows. The results indicate that this method has great potential to be used in large-scale wind farm clusters.


Sign in / Sign up

Export Citation Format

Share Document