scholarly journals Periodic Variation of Solar Flare Index for the Last Solar Cycle (Cycle 24)

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Atila Ozguc ◽  
Ali Kilcik ◽  
Volkan Sarp ◽  
Hülya Yeşilyaprak ◽  
Rıza Pektaş

In this study, we used the flare index (FI) data taken from Kandilli Observatory for the period of 2009–2020. The data sets are analyzed in three categories as Northern Hemisphere, Southern Hemisphere, and total FI data sets. Total FI data set is obtained from the sum of Northern and Southern Hemispheric values. In this study, the periodic variations of abovementioned three categories FI data sets were investigated by using the MTM and Morlet wavelet analysis methods. The wavelet coherence (XWT) and cross wavelet (WTC) analysis methods were also performed between these data sets. As a result of our analysis, the following results were found: (1) long- and short-term periodicities ( 2048 ± 512 day and periodicities smaller than 62 days) exist in all data sets without any exception at least with 95 % confidence level; (2) all periodic variations were detected maximum during the solar cycle, while during the minima, no meaningful period is detected; (3) some periodicities have data preference that about 150 days Rieger period appears only in the whole data set and 682-, 204-, and 76.6-day periods appear only in the Northern Hemisphere data sets; (4) During the Solar Cycle 24, more flare activity is seen at the Southern Hemisphere, so the whole disk data periodicities are dominated by this hemisphere; (5) in general, there is a phase mixing between Northern and Southern Hemisphere FI data, except about 1024-day periodicity, and the best phase coherency is obtained between the Southern Hemisphere and total flare index data sets; (6) in case of the Northern and Southern Hemisphere FI data sets, there is no significant correlation between two continuous wavelet transforms, but the strongest correlation is obtained for the total FI and Southern Hemisphere data sets.

2015 ◽  
Vol 11 (S320) ◽  
pp. 309-314 ◽  
Author(s):  
Anqin Chen ◽  
Jingxiu Wang

AbstractComparing with solar cycles 21-23, the level of solar activity in the current cycle is very low. So far, there have been only five SARs and 45 X class flares. The monthly smoothed total solar irradiance decreased sharply by 0.09% from the maximum of cycle 23 to the minima between cycles 23 and 24. In this contribution, we present new studies on SARs in Cycle 24. The SARs in the current cycle have relatively smaller flare index (Iflare) and composite vector field index (Icom) comparing with the SARs in cycles 22 and 23. There is a clearly linear relationship between Iflare and Icom. The emphasis of this contribution is put on the similarity and different behaviors of vector magnetic fields of the SARs in the current solar cycle and the previous ones. We try to get a satisfactory account for the general characteristics and relatively lower level of solar flare activity in Cycle 24.


2001 ◽  
Vol 203 ◽  
pp. 247-250
Author(s):  
S. D. Bao ◽  
G. X. Ai ◽  
H. Q. Zhang

Based on the Huairou Solar Observing Station dataset, we computed the current helicity for several hundreds of active regions and found that: (1) Active regions that do not follow the hemispheric helicity sign rule show more flare activity than normal active regions. (2) The relative number of active regions with reversed helicity sign is higher near sunspot maximum. (3) It appears that during solar cycle 22 the southern hemisphere has more the reversed-sign active regions and stronger flare activity than the northern hemisphere.


2020 ◽  
Vol 28 (1) ◽  
pp. 228-235
Author(s):  
Anita Joshi ◽  
Ramesh Chandra

AbstractHere we present the results of the study of the north-south (N-S) distribution and asymmetry of GOES soft X-ray (SXR) flares during solar cycle 24. The period of study includes ascending, maximum and descending phases of the cycle. During the cycle double-peaked (2011, 2014) solar maximum has occurred. The cycle peak in the year 2011 is due to B-class flares excess activity in the northern hemisphere (NH) whereas C and M class flares excess activity in the southern hemisphere (SH) supported the second peak of the cycle in 2014. The data analysis shows that the SXR flares are more pronounced in 11 to 20 degree latitudes for each hemisphere. Cumulative values of SXR flare count show northern excess during the ascending phase of the cycle. However, in the descending phase of the cycle, southern excess occurred. In the cycle a significant SH dominated asymmetry exists. Near the maximum of the cycle, the asymmetry enhances pronouncedly and reverses in sign.


2000 ◽  
Vol 179 ◽  
pp. 303-306
Author(s):  
S. D. Bao ◽  
G. X. Ai ◽  
H. Q. Zhang

AbstractWe compute the signs of two different current helicity parameters (i.e., αbestandHc) for 87 active regions during the rise of cycle 23. The results indicate that 59% of the active regions in the northern hemisphere have negative αbestand 65% in the southern hemisphere have positive. This is consistent with that of the cycle 22. However, the helicity parameterHcshows a weaker opposite hemispheric preference in the new solar cycle. Possible reasons are discussed.


Geophysics ◽  
2013 ◽  
Vol 78 (3) ◽  
pp. E117-E123 ◽  
Author(s):  
Vanessa Nenna ◽  
Adam Pidlisecky

The continuous wavelet transform (CWT) is used to create maps of dominant spatial scales in airborne transient electromagnetic (ATEM) data sets to identify cultural noise and topographic features. The introduced approach is applied directly to ATEM data, and does not require the measurements be inverted, though it can easily be applied to an inverted model. For this survey, we apply the CWT spatially to B-field and dB/dt ATEM data collected in the Edmonton-Calgary Corridor of southern Alberta. The average wavelet power is binned over four ranges of spatial scale and converted to 2D maps of normalized power within each bin. The analysis of approximately 2 million soundings that make up the survey can be run on the order of minutes on a 2.4 GHz Intel processor. We perform the same CWT analysis on maps of surface and bedrock topography and also compare ATEM results to maps of infrastructure in the region. We find that linear features identified on power maps that differ significantly between B-field and dB/dt data are well correlated with a high density of infrastructure. Features that are well correlated with topography tend to be consistent in power maps for both types of data. For this data set, use of the CWT reveals that topographic features and cultural noise from high-pressure oil and gas pipelines affect a significant portion of the survey region. The identification of cultural noise and surface features in the raw ATEM data through CWT analysis provides a means of focusing and speeding processing prior to inversion, though the magnitude of this affect on ATEM signals is not assessed.


Radiocarbon ◽  
2020 ◽  
Vol 62 (4) ◽  
pp. 759-778 ◽  
Author(s):  
Alan G Hogg ◽  
Timothy J Heaton ◽  
Quan Hua ◽  
Jonathan G Palmer ◽  
Chris SM Turney ◽  
...  

ABSTRACTEarly researchers of radiocarbon levels in Southern Hemisphere tree rings identified a variable North-South hemispheric offset, necessitating construction of a separate radiocarbon calibration curve for the South. We present here SHCal20, a revised calibration curve from 0–55,000 cal BP, based upon SHCal13 and fortified by the addition of 14 new tree-ring data sets in the 2140–0, 3520–3453, 3608–3590 and 13,140–11,375 cal BP time intervals. We detail the statistical approaches used for curve construction and present recommendations for the use of the Northern Hemisphere curve (IntCal20), the Southern Hemisphere curve (SHCal20) and suggest where application of an equal mixture of the curves might be more appropriate. Using our Bayesian spline with errors-in-variables methodology, and based upon a comparison of Southern Hemisphere tree-ring data compared with contemporaneous Northern Hemisphere data, we estimate the mean Southern Hemisphere offset to be 36 ± 27 14C yrs older.


2010 ◽  
Vol 6 (S273) ◽  
pp. 126-133 ◽  
Author(s):  
Matthew J. Penn ◽  
William Livingston

AbstractIndependent of the normal solar cycle, a decrease in the sunspot magnetic field strength has been observed using the Zeeman-split 1564.8nm Fe I spectral line at the NSO Kitt Peak McMath-Pierce telescope. Corresponding changes in sunspot brightness and the strength of molecular absorption lines were also seen. This trend was seen to continue in observations of the first sunspots of the new solar Cycle 24, and extrapolating a linear fit to this trend would lead to only half the number of spots in Cycle 24 compared to Cycle 23, and imply virtually no sunspots in Cycle 25.We examined synoptic observations from the NSO Kitt Peak Vacuum Telescope and initially (with 4000 spots) found a change in sunspot brightness which roughly agreed with the infrared observations. A more detailed examination (with 13,000 spots) of both spot brightness and line-of-sight magnetic flux reveals that the relationship of the sunspot magnetic fields with spot brightness and size remain constant during the solar cycle. There are only small temporal variations in the spot brightness, size, and line-of-sight flux seen in this larger sample. Because of the apparent disagreement between the two data sets, we discuss how the infrared spectral line provides a uniquely direct measurement of the magnetic fields in sunspots.


Radiocarbon ◽  
2015 ◽  
Vol 57 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Laia Andreu-Hayles ◽  
Guaciara M Santos ◽  
David A Herrera-Ramírez ◽  
Javier Martin-Fernández ◽  
Daniel Ruiz-Carrascal ◽  
...  

This study used high-precision radiocarbon bomb-pulse dating of selected wood rings to provide an independent validation of the tree growth periodicity of Pseudolmedia rigida (Klotzsch & H. Karst) Cuatrec. from the Moraceae family, collected in the Madidi National Park in Bolivia. 14C content was measured by accelerator mass spectrometry (AMS) in 10 samples from a single tree covering over 70 yr from 1939 to 2011. These preliminary calendar dates were determined by dendrochronological techniques and were also used to select the samples for 14C AMS. In order to validate these preliminary dates using the established Southern Hemisphere (SH) 14C atmospheric concentration data set, the targeted rings were selected to be formed during periods before and after the 14C bomb spike nuclear tests (i.e. 1950s–1960s). The excellent agreement of the dendrochronological dates and the 14C signatures in tree rings associated with the same dates provided by the bomb-pulse 14C atmospheric values for the SH (SHCal zone 1–2) confirms the annual periodicity of the observed growth layers, and thus the high potential of this species for tree-ring analysis. The lack of discrepancies between both data sets also suggests that there are no significant latitudinal differences between the 14C SHCal zone 1–2 curve and the 14C values obtained from the selected tree rings at this geographic location (14°33′S, 68°49′W) in South America. The annual resolution of P. rigida tree rings opens the possibility of broader applications of dendrochronological analysis for ecological and paleoclimatic studies in the Bolivian tropics, as well as the possibility of using wood samples from some tree species from this region to improve the quality of the bomb-pulse 14C SHCal curve at this latitude.


Radiocarbon ◽  
2013 ◽  
Vol 55 (4) ◽  
pp. 2059-2072 ◽  
Author(s):  
Quan Hua ◽  
Mike Barbetti ◽  
Andrzej Z Rakowski

We present a compilation of tropospheric 14CO2 for the period 1950–2010, based on published radiocarbon data from selected records of atmospheric CO2 sampling and tree-ring series. This compilation is a new version of the compilation by Hua and Barbetti (2004) and consists of yearly summer data sets for zonal, hemispheric, and global levels of atmospheric 14C. In addition, compiled (and extended) monthly data sets for 5 atmospheric zones (3 in the Northern Hemisphere and 2 in the Southern Hemisphere) are reported. The annual data sets are for use in regional and global carbon model calculations, while the extended monthly data sets serve as calibration curves for 14C dating of recent, short-lived terrestrial organic materials.


2012 ◽  
Vol 5 (2) ◽  
pp. 2887-2931 ◽  
Author(s):  
J. Heymann ◽  
O. Schneising ◽  
M. Reuter ◽  
M. Buchwitz ◽  
V. V. Rozanov ◽  
...  

Abstract. Carbon dioxide (CO2) is the most important greenhouse gas whose atmospheric loading has been significantly increased by anthropogenic activity leading to global warming. Accurate measurements and models are needed in order to reliably predict our future climate. This, however, has challenging requirements. Errors in measurements and models need to be identified and minimised. In this context, we present a comparison between satellite-derived column-averaged dry air mole fractions of CO2, denoted XCO2, retrieved from SCIAMACHY/ENVISAT using the WFM-DOAS algorithm, and output from NOAA's global CO2 modelling and assimilation system CarbonTracker. We investigate to what extent differences between these two data sets are influenced by systematic retrieval errors due to aerosols and unaccounted clouds. We analyse seven years of SCIAMACHY WFM-DOAS version 2.1 retrievals (WFMDv2.1) using the latest version of CarbonTracker (version 2010). We investigate to what extent the difference between SCIAMACHY and CarbonTracker XCO2 are temporally and spatially correlated with global aerosol and cloud data sets. For this purpose, we use a global aerosol data set generated within the European GEMS project, which is based on assimilated MODIS satellite data. For clouds, we use a data set derived from CALIOP/CALIPSO. We find significant correlations of the SCIAMACHY minus CarbonTracker XCO2 difference with thin clouds over the Southern Hemisphere. The maximum temporal correlation we find for Darwin, Australia (r2 = 54%). Large temporal correlations with thin clouds are also observed over other regions of the Southern Hemisphere (e.g. 43% for South America and 31% for South Africa). Over the Northern Hemisphere the temporal correlations are typically much lower. An exception is India, where large temporal correlations with clouds and aerosols have also been found. For all other regions the temporal correlations with aerosol are typically low. For the spatial correlations the picture is less clear. They are typically low for both aerosols and clouds, but dependent on region and season, they may exceed 30% (the maximum value of 46% has been found for Darwin during September to November). Overall we find that the presence of thin clouds can potentially explain a significant fraction of the difference between SCIAMACHY WFMDv2.1 XCO2 and CarbonTracker over the Southern Hemisphere. Aerosols appear to be less of a problem. Our study indicates that the quality of the satellite derived XCO2 will significantly benefit from a reduction of scattering related retrieval errors at least for the Southern Hemisphere.


Sign in / Sign up

Export Citation Format

Share Document