scholarly journals North-South Distribution and Asymmetry of GOES SXR Flares during Solar Cycle 24

2020 ◽  
Vol 28 (1) ◽  
pp. 228-235
Author(s):  
Anita Joshi ◽  
Ramesh Chandra

AbstractHere we present the results of the study of the north-south (N-S) distribution and asymmetry of GOES soft X-ray (SXR) flares during solar cycle 24. The period of study includes ascending, maximum and descending phases of the cycle. During the cycle double-peaked (2011, 2014) solar maximum has occurred. The cycle peak in the year 2011 is due to B-class flares excess activity in the northern hemisphere (NH) whereas C and M class flares excess activity in the southern hemisphere (SH) supported the second peak of the cycle in 2014. The data analysis shows that the SXR flares are more pronounced in 11 to 20 degree latitudes for each hemisphere. Cumulative values of SXR flare count show northern excess during the ascending phase of the cycle. However, in the descending phase of the cycle, southern excess occurred. In the cycle a significant SH dominated asymmetry exists. Near the maximum of the cycle, the asymmetry enhances pronouncedly and reverses in sign.

2020 ◽  
Vol 64 (1) ◽  
pp. 58-65 ◽  
Author(s):  
E. S. Isaeva ◽  
V. M. Tomozov ◽  
S. A. Yazev
Keyword(s):  
The Sun ◽  
X Ray ◽  

2015 ◽  
Vol 11 (S320) ◽  
pp. 330-332
Author(s):  
Ahmed A. Hady ◽  
Marwa H. Mostafa ◽  
Susan W. Samwel

AbstractDuring the declining phase of the Solar cycle 24, a new peak appeared on January 7, 2014. The release of x-class flares, with the high energetic particles, were found to be more intense than that occurred during the main peak of the same cycle. Few X-class flares were released, lately, during the year 2014. We note that during the last 5 solar cycles, a new peak has appeared, releasing high energetic particles and X-class solar flares, which are called the secondary peak or the double peak of solar cycle. The aim of this descriptive study is to follow the morphological and magnetic changes of the active region before, during, and after the production of X-class flares according to data analysis. Furthermore, the causes of the release of such eruptive storms have been discussed for the period, year 2014, during the double peak of the solar cycle 24.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Zishen Li ◽  
Ningbo Wang ◽  
Ang Liu ◽  
Yunbin Yuan ◽  
Liang Wang ◽  
...  

AbstractAs a new Ionosphere Associate Analysis Center (IAAC) of the International GNSS Service (IGS), Chinese Academy of Sciences (CAS) started the routine computation of the real-time, rapid, and final Global Ionospheric Maps (GIMs) in 2015. The method for the generation of CAS rapid and final GIMs and recent updates are presented in the paper. The quality of CAS post-processed GIMs is assessed during 2015–2018 after the maximum of solar cycle 24. To perform an independent and fair assessment, Jason-2/3 Vertical Total Electron Contents (VTEC) are first used as the references over the ocean. GPS differential Slant TECs (dSTEC) generated from 55 Multi-GNSS Experimental (MGEX) stations of the IGS are also employed, which provides a complementing way to evaluate the ability of electron content models to reproduce the spatial and temporal gradients in the ionosphere. During the test period, Jet Propulsion Laboratory (JPL) GIMs present significantly positive deviations compared to the Jason VTEC and GPS dSTEC. Technical University of Catalonia (UPC) rapid GIM UQRG exhibits the best performance in both Jason VTEC and GPS dSTEC analysis. The CAS GIMs show comparable performance with the results of the first four IAACs of the IGS. As expected, the poor performance of all GIMs is in equatorial regions and the high latitudes of the southern hemisphere. The consideration of generating multi-layer or three-dimensional ionospheric maps is emphasized to mitigate the inadequacy of ionospheric single-layer assumption in the presence of pronounced latitudinal gradients. The use of ionospheric observations from the new GNSS constellations and other space- or ground-based observation techniques is also suggested in the generation of future GIMs, given the sparse GPS/GLONASS stations in the southern hemisphere.


2019 ◽  
Vol 873 (2) ◽  
pp. 122 ◽  
Author(s):  
F. Y. Li ◽  
N. B. Xiang ◽  
J. L. Xie ◽  
J. C. Xu

2021 ◽  
Author(s):  
Alexander Kosovichev ◽  
Ivan Sharykin

<p>Helioseismic response to solar flares ("sunquakes") occurs due to localized force or/and momentum impacts observed during the flare impulsive phase in the lower atmosphere. Such impacts may be caused by precipitation of high-energy particles, downward shocks, or magnetic Lorentz force. Understanding the mechanism of sunquakes is a key problem of the flare energy release and transport. Our statistical analysis of M-X class flares observed by the Solar Dynamics Observatory during Solar Cycle 24 has shown that contrary to expectations, many relatively weak M-class flares produced strong sunquakes, while for some powerful X-class flares, helioseismic waves were not observed or were weak. The analysis also revealed that there were active regions characterized by the most efficient generation of sunquakes during the solar cycle. We found that the sunquake power correlates with maximal values of the X-ray flux derivative better than with the X-ray class. The sunquake data challenge the current theories of solar flares.</p>


Author(s):  
Amrita Prasad ◽  
Soumya Roy ◽  
Subhash Chandra Panja ◽  
Sankar Narayan Patra

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Atila Ozguc ◽  
Ali Kilcik ◽  
Volkan Sarp ◽  
Hülya Yeşilyaprak ◽  
Rıza Pektaş

In this study, we used the flare index (FI) data taken from Kandilli Observatory for the period of 2009–2020. The data sets are analyzed in three categories as Northern Hemisphere, Southern Hemisphere, and total FI data sets. Total FI data set is obtained from the sum of Northern and Southern Hemispheric values. In this study, the periodic variations of abovementioned three categories FI data sets were investigated by using the MTM and Morlet wavelet analysis methods. The wavelet coherence (XWT) and cross wavelet (WTC) analysis methods were also performed between these data sets. As a result of our analysis, the following results were found: (1) long- and short-term periodicities ( 2048 ± 512 day and periodicities smaller than 62 days) exist in all data sets without any exception at least with 95 % confidence level; (2) all periodic variations were detected maximum during the solar cycle, while during the minima, no meaningful period is detected; (3) some periodicities have data preference that about 150 days Rieger period appears only in the whole data set and 682-, 204-, and 76.6-day periods appear only in the Northern Hemisphere data sets; (4) During the Solar Cycle 24, more flare activity is seen at the Southern Hemisphere, so the whole disk data periodicities are dominated by this hemisphere; (5) in general, there is a phase mixing between Northern and Southern Hemisphere FI data, except about 1024-day periodicity, and the best phase coherency is obtained between the Southern Hemisphere and total flare index data sets; (6) in case of the Northern and Southern Hemisphere FI data sets, there is no significant correlation between two continuous wavelet transforms, but the strongest correlation is obtained for the total FI and Southern Hemisphere data sets.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Raj Kumar ◽  
Mahesh Chandra Mathpal ◽  
Bimal Pande ◽  
Seema Pande

North-south asymmetry has been a significant aspect exhibited by various solar activity parameters of the Sun. In this work we have statistically analyzed soft X-ray (SXR) flares during the period Jan 1981 to Dec 2016 for four different solar cycles (SCs) covering cycles 21, 22, 23 and 24. We have presented the class wise (B, C, M & X) variation of SXR flares for these SCs. SXR flare activity is lowest in solar cycle 24 as compared to cycles 22 and 23. It is shown that M class activity continuously decreased from SC 21 to 24. X and C class flares show higher activity in SC 22 and 23 as compared to SC 24, whereas B class flare activity is higher for SC 23. We have also studied the north-south (N-S) asymmetry of SXR flares for SCs 21, 22, 23 and 24. Our study revealed that during SCs 21, 22 and 23 the flare activity was more pronounced in the Southern hemisphere. However, the flare activity was equally distributed between the northern and southern hemispheres for SC 24


Sign in / Sign up

Export Citation Format

Share Document